

Micron Reference Architecture

Micron® 7300 PRO NVMe™ SSDs +
Red Hat® Ceph® Storage for
2nd Gen AMD EPYC™ Processors

Reference Architecture

John Mazzie, Principal Storage Solution Engineer

Tony Ansley, Principal Technical Marketing Engineer

2

Micron Reference Architecture

Contents
Executive Summary ... 3
Why Micron for this Solution .. 4
Ceph Distributed Architecture Overview .. 4
Reference Architecture Overview .. 6

Software .. 6
Red Hat Ceph Storage ... 6
Red Hat Enterprise Linux ... 7

Software by Node Type ... 7
Hardware by Node Type ... 7

Ceph Data Node .. 7
Ceph Monitor Node .. 8

Micron Components Used ... 9
Micron 7300 MAX NVMe SSDs ... 9
Network Switches ... 9

Planning Considerations .. 10
Number of Ceph Storage Nodes ... 10
Number of Ceph Monitor Nodes ... 10
Replication Factor ... 10
CPU Sizing .. 10
Ceph Configuration Tuning ... 10
Networking .. 10
OS Tuning/NUMA .. 11

Measuring Performance ... 11
4 KiB Random Workloads ... 11
4MB Object Workloads.. 12

Baseline Performance Test Methodology .. 12
Storage Baseline Results .. 12
Network Baseline Results ... 13

Ceph Performance Results and Analysis .. 13
Small Block Random Workload Testing .. 13

4 KiB 100% Random Write Workloads .. 13
4 KiB Random Read Workload Analysis .. 15
4 KiB Random 70% Read/30% Write Workload Analysis .. 17

4 MiB Object Workloads .. 18
Object Write Workload Analysis ... 19
Object Read Workload Analysis .. 20

Summary .. 22
Appendix A ... 23

Ceph.conf .. 23
Ceph-Ansible Configuration .. 25

Osds.yml .. 27
Creating Multiple Namespaces ... 31
Partitioning Drives for OSDs ... 33

About Micron .. 38
About Red Hat .. 38
About Ceph Storage ... 38

3

Micron Reference Architecture

Executive Summary
This document describes an example configuration of a performance-optimized Red Hat® Ceph® Storage
(RHCS) cluster using Micron® NVMe™ SSDs, AMD EPYC™ 7002 x86 architecture-based rack-mount
servers, and 100 Gb/E networking.

It details the hardware and software building blocks used to construct this reference architecture (including
the Red Hat Enterprise Linux OS configuration, network switch configurations, and Ceph tuning parameters)
and shows the performance test results and measurement techniques for a scalable 4-node RHCS
architecture.

Optimized for block performance while also providing very high-performance object storage, this all-NVMe
solution provides a rack-efficient design to enable:

Faster deployment: The configuration has been pre-validated, optimized, and documented to enable faster
deployment and faster performance than using default instructions and configuration.

Balanced design: The right combination of NVMe SSDs, DRAM, processors, and networking ensures a
balanced set of subsystems optimized for performance.

Broad use: Complete documentation of tuning and performance characterization across multiple IO profiles
for broad deployment across multiple uses.

Our testing illustrates exceptional performance results for 4 KiB random block workloads and 4 MiB object
workloads, as shown in Tables 1a and 1b.

Table 1a and Table 1b - Performance Summary

4 KiB Random Block Performance

IO Profile IOPS Avg. Latency

100% Read 2,970,481 1.42ms

70%/30% R/W 1,289,009
W: 5.89ms
R: 2.08ms

100% Writes 558,373 6.34ms

4 MiB Object Performance

IO Profile Throughput Avg. Latency

100% Sequential Read 41.22 GiB/s 29.67ms

100% Random Read 43.77 GiB/s 27.91ms

100% Random Writes 21.8 GiB/s 57.59ms

Micron Reference Architectures
Micron Reference Architectures are optimized, pre-engineered, enterprise-leading
solution templates for platforms that are co-developed between Micron and industry-
leading hardware and software companies.

Designed and tested at Micron’s Storage Solutions Center, they provide end users, system
builders, independent software vendors (ISVs), and OEMs with a proven template to build
next-generation solutions with reduced time investment and risk.

4

Micron Reference Architecture

Why Micron for this Solution
Storage (SSDs and DRAM) represents a large portion of the value of today’s advanced server/storage
solutions. Micron’s storage expertise starts at memory technology research, innovation, and design and
extends to collaborating with customers and software providers on total data solutions. Micron develops and
manufactures the storage and memory products that go into the enterprise solutions described here.

Ceph Distributed Architecture Overview
A Ceph storage cluster consists of multiple Ceph monitor nodes and data nodes for scalability, fault-
tolerance, and performance. Ceph stores all data as objects, regardless of the client interface used. Each
node is based on industry-standard hardware and uses intelligent Ceph daemons that communicate with
each other to:

 Store, retrieve, and replicate data objects

 Monitor and report on cluster health

 Redistribute data objects dynamically

 Ensure data object integrity

 Detect and recover from faults and failures

Figure 1 - Ceph Architecture

To the application servers (Ceph clients) that read and write data, a Ceph storage cluster looks like a simple
pool storage resource for data; however, the storage cluster performs many complex operations in a manner
that is completely transparent to the application server. Ceph clients and Ceph object storage daemons
(Ceph OSDs or OSDs) both use the Controlled Replication Under Scalable Hashing (CRUSH) algorithm for
storage and retrieval of objects.

For a Ceph client, the storage cluster is very simple. When a Ceph client reads or writes data (referred to as
an IO context), it connects to a logical storage pool in the Ceph cluster. The figure above illustrates the overall
Ceph architecture, with concepts described in the sections that follow.

Clients write to Ceph storage pools while the CRUSH ruleset determines how placement groups get
distributed across OSDs.

5

Micron Reference Architecture

Pools: Ceph clients store data objects in logical, dynamic partitions called pools. Administrators can create
pools for various reasons such as for particular data types, to separate block, file and object usage,
application isolation, or to separate user groups (multitenant hosting). The Ceph pool configuration dictates
the number of object replicas and the number of placement groups (PGs) within the pool. Ceph storage pools
can be either replicated or erasure-coded, as appropriate, for the application and cost model. Additionally,
pools can “take root” at any position in the CRUSH hierarchy, allowing placement on groups of servers with
differing performance characteristics, which allows for the optimization of different storage workloads.

Object storage daemons: Object storage daemons (OSDs) store data and handle data replication, recovery,
backfilling, and rebalancing. They also provide some cluster state information to Ceph monitor nodes by
checking other Ceph OSDs with a heartbeat mechanism. A Ceph storage cluster, configured to keep three
replicas of every object, requires a minimum of three OSDs; two of which need to be operational to process
write requests successfully. Ceph OSDs roughly correspond to a file system on a physical hard disk drive.

Placement groups: Placement groups (PGs) are shards, or fragments, of a logical object pool that are
composed of a group of Ceph OSDs that are in a peering relationship. PGs provide a means of creating
replication or erasure coding groups of coarser granularities than on a per-object basis. A larger number of
placement groups (e.g., 200 per OSD or more) leads to better balancing.

CRUSH map: The CRUSH algorithm determines how to store and retrieve information from data nodes.
CRUSH enables clients to communicate directly with OSDs on data nodes rather than through an
intermediary service. By doing so, this removes a single point of failure from the cluster. The CRUSH map
consists of a list of all OSDs and their physical location. Upon initial connection to a Ceph-hosted storage
resource, the client contacts a Ceph monitor node for a copy of the CRUSH map, which enables direct
communication between the client and the target OSDs.

Ceph monitors (MONs): Before Ceph clients can read or write data, they must contact a Ceph MON to
obtain the current CRUSH map. A Ceph storage cluster can operate with a single MON, but this introduces a
single point of failure. For added reliability and fault tolerance, Ceph supports an odd number of monitors in a
quorum (typically three or five for small to mid-sized clusters). Consensus among various MON instances
ensures consistent knowledge about the state of the cluster.

6

Micron Reference Architecture

Reference Architecture Overview
Micron designed this reference architecture on the AMD EPYC 7002 architecture using dual AMD 7742
processors. This processor architecture provides a performance-optimized server platform while yielding an
open, cost-effective software-defined storage (SDS) platform suitable for a wide variety of use cases such as
OpenStack™ cloud, video distribution, transcoding, and big data storage.

AMD EPYC 7002 Processors: Utilizing the x86 architecture and built on 7nm technology, the AMD EPYC
7002 Series of processors bring together up to 64 cores, 4TB memory capacity, support for eight channels of
DDR4-3200, and 128 lanes of PCIe® 4 IO, all with the right ratios to enable best-in-class video transcoding
workloads. Optimize costs by choosing one socket or two sockets with the optimal core count needed to run
your database without compromising on processor features.

The Micron 7300 PRO NVMe SSD offers excellent performance with lower power consumption and latencies.
Capacity per rack unit (RU) is maximized with ten 7.68TB NVMe SSDs per 1U storage node. This reference
architecture takes up six RUs consisting of one monitor node and four data nodes and one Ethernet switch.
Using this reference architecture as a starting point, administrators can add additional data nodes 1RU and
76TB at a time.

Two Mellanox ConnectX®-5 100 Gb/E network cards per server handle data traffic— one for the client/public
network traffic and a second for the internal Ceph replication network traffic. Mellanox ConnectX-4 50 Gb/E
network cards are installed in both the clients and monitor nodes for connection to the storage networks.

Figure 2 – Micron Ceph Reference Architecture

Software

This section details the software versions used in the reference architecture.

Red Hat Ceph Storage

Red Hat collaborates with the global open source Ceph community to develop new Ceph features, then
packages changes into predictable, stable, enterprise-quality releases. Red Hat Ceph Storage uses the open-

Storage Nodes
AMD EPYC 2 dual-socket x86 1U
2x AMD 7742 CPUs
512GB RAM
10x 7.68TB 7300 MAX SSDs

Monitor Nodes
AMD EPYC single-socket x86 1U
1x AMD 7551P CPU
256GB RAM

Network Switches:
1x 100 Gb/E, 32x QSFP28 ports

Note: Micron performed all tests using a single monitor node. Production deployments should
use at least three monitor nodes to provide adequate redundancy to the solution.

7

Micron Reference Architecture

source Ceph Luminous version 12.2, to which Red Hat was a leading code contributor. This reference
architecture uses version 3.3 of Red Hat Ceph Storage.

As a self-healing, self-managing, unified storage platform with no single point of failure, Red Hat Ceph
Storage decouples software from hardware to support block, object, and file storage services on standard x86
servers, using either HDDs and/or SSDs, significantly lowering the cost of storing enterprise data.
OpenStack® also uses Red Hat Ceph Storage along with services, including Nova, Cinder, Manila, Glance,
Keystone, and Swift, and it offers user-driven storage lifecycle management. Ceph is a highly tunable,
extensible, and configurable architecture, well suited for archival, rich media, and cloud infrastructure
environments.

Among many of its features, Red Hat Ceph Storage provides the following advantages to this reference
architecture:

 Block storage integrated with OpenStack, Linux, and KVM hypervisor

 Data durability via erasure coding or replication

 Red Hat Ansible automation-based deployment

 Advanced monitoring and diagnostic information with an on-premise monitoring dashboard

 Availability of service-level agreement (SLA)-backed technical support

 Red Hat Enterprise Linux (included with subscription) and the backing of a global open source community

Red Hat Enterprise Linux

Enterprises in need of a high-performance operating system environment depend on Red Hat® Enterprise
Linux® (RHEL) for scalable, fully supported, open-source solutions. Micron uses version 7.7 of Red Hat
Enterprise Linux in this reference architecture due to its performance, reliability, and security, as well as its
broad usage across many industries. Supported by leading hardware and software vendors, RHEL provides
broad platform scalability (from workstations to servers to mainframes) and a consistent application
environment across physical, virtual, and cloud deployments.

Software by Node Type

Table 2 below shows the software and version numbers used in the Ceph monitor and storage nodes.

Table 2 - Software Deployed on Ceph Data and Monitor Nodes

The software used on the load generation client is the same as that used on the Ceph data and monitor
nodes. All block testing used the open-source FIO storage load generation tool, version 3.1.0, leveraging the
librbd module.

Hardware by Node Type

Ceph Data Node

The Ceph data nodes in this RA host two or more OSDs per physical SSD. While this RA used a server product
available for purchase from one vendor, this RA does not make any recommendations regarding any specific

Operating System Red Hat Enterprise Linux 7.7

Storage Software Red Hat Ceph Storage 3.3

NIC Driver Mellanox® OFED Driver 4.7-1.0.0.0

8

Micron Reference Architecture

server vendor or implementation, focusing on the overall solution architecture built around AMD EPYC 7002
processors and architecture.1

Mellanox ConnectX-5 network controller offers dual ports of 10/25/50/100 Gb/s Ethernet connectivity and
advanced offload capabilities while delivering high bandwidth, low latency, and high computation efficiency for
high performance, data-intensive, and scalable HPC, cloud, data analytics, database, and storage platforms.

Table 3 provides the details for the server architecture used for this Ceph data node role.

Table 3 - Storage Node Hardware Details

Ceph Monitor Node

The Ceph monitor node in this RA is an AMD EPYC 7001 architecture server. As with the Ceph data node,
this RA does not make any recommendations regarding any specific server vendor or implementation,
focusing on the overall solution architecture built around AMD processors and architecture.

ConnectX-4 EN network controller offers dual ports of 10/25/50/100 Gb/s Ethernet connectivity and advanced
offload capabilities while delivering high bandwidth, low latency, and high computation efficiency for high
performance, data-intensive, and scalable HPC, cloud, data analytics, database, and storage platforms.

Table 4 below provides the details for the server architecture used for this Ceph monitor node role.

Table 4 -Monitor Node Hardware Details

1 2nd Gen AMD EPYC processors used on motherboards designed for the 1st Gen AMD EPYC processor
require a BIOS update from the server manufacturer. The EPYC 7742, 7642 and 7542 are 225w parts and
require additional updates. Contact the server manufacturer for support. For PCIe® 4 and DDR4-3200 memory
support, contact the server manufacturer. A motherboard designed for 2nd Gen EPYC processors is required
to enable all available functionality. ROM-06a

Server Type AMD x86 (dual-socket) 1U with PCIe Gen 3/4

CPU (x2)
AMD EPYC 7742
(64 cores, 2.25GHz base)

DRAM (x16) Micron 32GB DDR4-2666 MT/s, 512GB total per node

NVMe (x10) Micron 7300 PRO NVMe SSDs, 7.68TB each

SATA (OS) Micron 2200 BOOT (NVMe)

Network 2x Mellanox ConnectX-5 100 Gb/E dual-port (MCX516A-CCAT)

Server Type AMD x86 (single-socket) 1U with PCIe Gen3

CPU (x1)
1x AMD EPYC 7551P
(32 cores, 2.0 GHz base)

DRAM (x8) Micron 32GB DDR4-2400 MT/s, 256GB total per node

SATA (OS) 64GB SATA Disk on Motherboard

Network 1x Mellanox ConnectX-4 50 Gb/E single-port (MC4X413A-GCAT)

9

Micron Reference Architecture

Micron Components Used

Micron 7300 PRO NVMe SSDs

This RA uses the 7300 PRO 7.68TB NVMe SSD. The Micron 7300 series of NVMe SSDs is Micron’s
inaugural entry in the mainstream NVMe SSD segment. Built upon the proven 96-layer NAND technology and
the latest NVMe architecture, the 7300 provides up to 6X the performance of SATA at a reasonable cost.
Available in both U.2 (7mm) and M.2 (80mm,110mm) form factors and capacities ranging from 400MB to
7.68TB, the 7300 is the right SSD for a wide range of uses, including server boot, caching, database, and
emerging applications.

Table 5 below summarizes the 7300 PRO 7.68TB specifications.

Note: GB/s measured using 128K transfers, IOPS measured using 4K transfers. All data is steady state. Complete MTTF information can be
provided by your Micron sales associate.

Table 5 - 7300 PRO 7.68TB Specifications Summary

Network Switches

This RA uses one 100 Gb/E switch (32x QSFP28 ports each). For production purposes, Micron recommends
using two switches for redundancy purposes, with each switch partitioned to support two network segments
— one for the client data transfer and the second for the Ceph intercluster storage network. Switches used in
this RA use the Broadcom Tomahawk ® switch architecture (Table 6).

Table 6 - Network Switches (Hardware and Software)

The SSE-C3632S Layer 2/3 Ethernet Switch provides an open networking-compliant solution, providing the
ability to maximize the efficient and flexible use of valuable data center resources while providing an ideal
platform for managing and maintaining those resources in a manner in tune with the needs of an organization.

Model 7300 PRO Interface PCIe Gen3 x4

Form Factor U.2 Capacity 7.68TB

NAND Micron 3D TLC MTTF 2M device hours

Sequential Read 3.0 GB/s Random Read 520,000 IOPS

Sequential Write 1.8 GB/s Random Write 85,000 IOPS

Endurance 22.4PB Status Production

Model Supermicro SSE-C3632SR

Software Cumulus™ Linux 3.4.2

10

Micron Reference Architecture

Planning Considerations
The following topics provide information to enhance the overall experience of the solution and ensure the
solution is scalable while maximizing performance.

Number of Ceph Storage Nodes

At least three (3) storage nodes must be present in a Ceph cluster to become eligible for Red Hat technical
support. While this RA uses four data nodes, additional nodes can provide scalability and redundancy. Four
(4) storage nodes represent a suitable starting point as a building block for scaling up to larger deployments.

Number of Ceph Monitor Nodes

A Ceph storage cluster deployed for production workloads should have at least three (3) monitor nodes on
separate hardware for added resiliency. These nodes do not require high-performance CPUs. They do benefit
from having SSDs to store the monitor map data. For testing purposes, this solution uses a single monitor
node..

Replication Factor

NVMe SSDs have high reliability, with high MTTF and low bit error rate. Micron recommends using a
minimum replication factor of two in production when deploying OSDs on NVMe versus a replication factor of
three, which is common with legacy HDD-based storage.

CPU Sizing

Ceph OSD processes can consume large amounts of CPU while doing small block operations. Consequently,
a higher CPU core count results in higher performance for I/O-intensive workloads.

For throughput-intensive workloads characterized by large sequential object-based I/O, Ceph performance is
more likely to be bound by the maximum network bandwidth of the cluster. CPU sizing is less impactful.

Ceph Configuration Tuning

Tuning Ceph for NVMe devices can be complex. The ceph.conf settings used in this reference architecture
optimize the solution for small block random performance (see Appendix A).

Networking

A 25 Gb/E network enables the solution to leverage the maximum block performance benefits of a NVMe-
based Ceph cluster. For throughput-intensive workloads, Micron recommends 50 Gb/E or faster throughput
connections.

11

Micron Reference Architecture

OS Tuning/NUMA

This RA used Ceph-Ansible for OS tuning and applied the following OS settings:

disable_transparent_hugepage: true

kernel.pid_max, value: 4,194,303

fs.file-max, value: 26,234,859

vm.zone_reclaim_mode, value: 0

vm.swappiness, value: 1

vm.min_free_kbytes, value: 1,000,000

net.core.rmem_max, value: 268,435,456

net.core.wmem_max, value: 268,435,456

net.ipv4.tcp_rmem, value: 4096 87,380 134,217,728

net.ipv4.tcp_wmem, value: 4096 65,536 134,217,728

ceph_tcmalloc_max_total_thread_cache: 134,217,728

Due to the unbalanced nature of the servers concerning PCIe lane assignments (four NVMe devices and both
NICs attach to CPU 1, while the other six NVMe devices attach CPU 2), this RA did not use any NUMA tuning
during testing.

Irqbalance was active for all tests and did a reasonable job balancing across CPUs.

Measuring Performance

4 KiB Random Workloads

Small block testing used the FIO synthetic I/O generation tool and the Ceph RADOS Block Device (RBD)
driver to generate 4 KiB random I/O workloads.

The test configuration consisted of initially creating 130 RBD images, resulting in each RBD image size of
75GB and a total of 9.75TB of data. Implementing a 2x replicated pool resulted in 19.5TB of total data stored
within the cluster.

The four data nodes have a combined total of 2TB of DRAM (512GB per server), which is 10.2% of the
dataset size.

Random write tests scaled the number of FIO clients running against the Ceph cluster at a fixed queue depth
of 32. (A client is a single instance of FIO running on a load generation server.) Using a queue depth of 32
simulates an active RDB image consumer and allows tests to scale up to a high client count. The number of
clients scale from 10 clients to 130 clients. The test used 10 load generation servers with an equal number of
FIO instances on each load generation server.

Random reads and 70/30 read/write tests all used 130 FIO clients and their associated RBD images, scaling
the queue depth per FIO client from 1 to 32 in base-2 increments. It is important to use all 130 FIO clients for
these tests to ensure that tests access the entire 19.5TB dataset; otherwise, Linux filesystem caching can
skew results, resulting in a false report of higher performance.

Three test iterations executed for 10 minutes, with a 2-minute ramp-up time, for a total of 12-minute per test
iteration or 36 minutes per pass. Before each iteration, the test script clears all Linux filesystem caches. The
results reported are the mathematical average across all test runs.

12

Micron Reference Architecture

4MB Object Workloads

Object testing utilizes the RADOS Bench tool provided as part of the Ceph package to measure object I/O
performance. This benchmark reports throughput performance in GiB/s and represents the best-case object
performance. Object I/O uses a RADOS gateway service operating on each load generation server. The
configuration of RADOS gateway is beyond the scope of this RA.

To measure object write throughput, each test executed RADOS Bench with a “threads” value of 16 on a load
generation server writing directly to a Ceph storage pool using 4MB objects. RADOS Bench executed on a
varying number of load generation servers scaled between 2 to 20 in base-2 increments.

To measure object read throughput, 10 RADOS Bench instances executed 4MB object reads against the
storage pool while scaling RADOS Bench thread count between one thread and 32 threads in base-2
increments.

Five test iterations executed for 10 minutes. Before each iteration, the test script cleared all Linux filesystem
caches. The results reported are the mathematical average across all test runs.

Baseline Performance Test Methodology
Storage and network performance is baseline tested without Ceph software to
determine the theoretical hardware performance maximums using FIO (storage) and
iPerf (network) benchmark tools. Each storage test executes one locally run FIO
instance per NVMe drive (10 total NVMe drives) simultaneously. Each network test
executes four concurrent iperf3 instances from each data node and monitor node to
each other and from each client to each data server. The results represent the
expected maximum performance possible using the specific server and network
components in the test environment.

Storage Baseline Results

The baseline block storage test executed FIO across all 10 7300 PRO NVMe SSDs
on each storage node. FIO instances executed 4 KiB random writes at a queue
depth of 64 per FIO instance. Table 7 provides the average IOPS and latency for all
storage baseline testing.

Storage Node Write IOPS Write Avg. Latency Read IOPS Read Avg. Latency

Node 1 893,225 2.93ms 1,185,665 2.18ms

Node 2 879,912 2.97ms 1,156,447 2.24ms

Node 3 860,289 3.06ms 1,169,932 2.25ms

Node 4 884,130 2.99ms 1,155,963 2.29ms

Table 7 - Baseline FIO 4 KiB Random Workloads

10 Micron 7300 PRO

SSDs deliver 1.1 million

4 KiB random read IOPS

and 880,000 4 KiB

random write IOPS in

baseline FIO testing on a

single storage server.

13

Micron Reference Architecture

The baseline object storage test executed FIO across all 10 7300 PRO NVMe SSDs on each node. FIO
instances executed 128 KiB sequential writes at a queue depth of eight per FIO instance. FIO instances
executed 4 MiB sequential reads at a queue depth of eight per FIO instance. Table 8 provides the average
throughput and latency results.

Storage Node Write Throughput Write Avg. Latency Read Throughput Read Avg. Latency

Node 1 10.776 GiB/s 14.53ms 14.059 GiB/s 11.11ms

Node 2 11.257 GiB/s 13.92ms 14.413 GiB/s 10.84ms

Node 3 10.133 GiB/s 15.45ms 13.165 GiB/s 11.86ms

Node 4 10.521 GiB/s 14.90ms 13.234 GiB/s 11.80ms

Table 8 - Baseline FIO 128 KiB Sequential Workloads

Network Baseline Results

Network connectivity tests used six concurrent iPerf3 instances running for one minute. Each iPerf3 instance
on each server transmitted data to all other servers.

All storage nodes with 100 GbE NICs averaged 96+ Gb/s during testing. Monitor nodes and clients with 50
GbE NICs averaged 45+ Gb/s during testing.

Ceph Performance Results and Analysis
The results detailed below are based on a 2x replicated storage pool using version 3.3 of Red Hat Ceph
Storage with 8192 placement groups.

Tests used 130 RBD images at 75GB each, providing 9.75TB of data on a 2x replicated pool (19.5TB of total
data). Random write tests used a constant queue depth of 32, increasing the number of simultaneous clients
from 10 to 130 in increments of 10. A queue depth of 32 simulated a reasonably active RDB image consumer
and enabled tests to scale to a high number of clients.

Random read and 70/30 R/W tests executed an I/O load against all 130 RBD images, scaling up the queue
depth per client from 1 to 32 in base-2 increments. Using130 clients for every test ensured that Ceph used
the Linux filesystem cache equally on all tests.

For each I/O workload described below, five 10-minute tests executed with a five-minute ramp-up time for
each test. The results reported in the sections below is the mathematical average of each five-test pass.

Small Block Random Workload Testing

The following sections describe the resulting performance measured for random 4 KiB (4.0 x 210 byte) block
read, write, and mixed read/write I/O tests.

4 KiB 100% Random Write Workloads

Write performance reached a maximum of 577K 4 KiB IOPS. Average latency showed a linear increase as
the number of clients increased, reaching a maximum average latency of 10.59ms at 190 clients. Tail
(99.99%) latency increased smoothly across the entire 200 clients tested, reaching a maximum of 475.8ms at
200 clients (Figure 3).

14

Micron Reference Architecture

Figure 3 – 4 KiB Random Write IOPS vs. Latency

Ceph data nodes depend heavily on CPU for performance. Low client load shows CPU utilization starting at
50% with 10 clients and increasing steadily to over 66% at a load of 190 clients (Figure 4).

Figure 4 – 4 KiB Random Write IOPS vs. CPU Utilization

0

50

100

150

200

250

300

350

400

450

500

0K

100K

200K

300K

400K

500K

600K

700K

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

La
te

nc
y

(m
s)

IO
P

S

FIO Clients

4 KiB Random Write vs. Latency
(Queue Depth = 32)

Total IOPs Avg Latency (ms) Tail (99.99%) Latency (ms)

0%

10%

20%

30%

40%

50%

60%

70%

80%

0K

100K

200K

300K

400K

500K

600K

700K

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

C
P

U
 U

til
iz

at
io

n

IO
P

S

FIO Clients

4 KiB Random Write vs. CPU Utilization
(Queue Depth = 32)

Total IOPs Total CPU %

15

Micron Reference Architecture

Table 9 summarize the solution’s write performance. Based on the observed behavior, write-centric small-
block workloads should focus on sizing for no more than 85% CPU utilization. The actual number of clients
attained before reaching this level of utilization depends on the CPU model chosen. This RA’s choice of an
AMD EPYC 7742 CPU indicates this solution can scale to 200 clients.

Table 9 – 4 KiB Random Write Results Summary

4 KiB Random Read Workload Analysis

Read performance of 130 FIO clients reached a maximum of 2.97 million 4 KiB IOPS. Average latency showed an
increase as the queue depth increased, reaching a maximum average latency of only 1.4ms at queue depth 32.
Average latency doubles moving from queue depth 16 to queue depth 32 while generating the same IOPS
performance. Tail (99.99%) latency increased steadily up to a queue depth of 8, then spiked upward at queue depth
of 16 (16% increase) and then again at queue depth of 32, going from 60.45ms at queue depth 16 to 324ms at
queue depth 32 — an increase of over 435% (Figure 5).

FIO Clients IOPS
Average
Latency

95% Latency 99.99% Latency
Average

CPU Utilization

10 Clients 319,569 1.00ms 1.22ms 85.25ms 38.58%

20 Clients 431,395 1.48ms 4.45ms 103.38ms 50.73%

30 Clients 473,962 2.03ms 6.98ms 135.14ms 55.06%

40 Clients 499,710 2.57ms 8.98ms 159.11ms 57.56%

50 Clients 517,595 3.10ms 10.90ms 174.66ms 59.35%

60 Clients 532,444 3.62ms 12.81ms 194.75ms 60.84%

70 Clients 542,822 4.15ms 14.82ms 208.36ms 61.83%

80 Clients 551,303 4.67ms 16.86ms 222.67ms 62.73%

90 Clients 548,208 5.30ms 20.10ms 242.65ms 62.57%

100 Clients 548,275 5.89ms 23.69ms 265.03ms 62.74%

110 Clients 558,373 6.34ms 25.15ms 268.90ms 64.11%

120 Clients 555,093 6.97ms 29.74ms 291.73ms 64.00%

130 Clients 547,958 7.66ms 35.09ms 314.67ms 63.89%

140 Clients 552,283 8.18ms 37.95ms 315.92ms 64.33%

150 Clients 564,318 8.56ms 40.26ms 315.62ms 65.52%

160 Clients 561,645 9.18ms 44.09ms 341.04ms 65.50%

170 Clients 565,150 9.69ms 46.96ms 347.60ms 65.96%

180 Clients 561,560 10.35ms 52.06ms 378.22ms 65.64%

190 Clients 577,622 10.59ms 51.33ms 416.40ms 66.94%

200 Clients 577,459 11.15ms 55.04ms 475.80ms 66.23%

16

Micron Reference Architecture

Figure 5 - 4 KiB Random Read IOPS vs. Latency

Low queue depth showed CPU utilization starting at 14.5% at queue depth of 1 and increasing steadily to
over 78% at a queue depth of 32 (Figure 6).

Figure 6 – 4 KiB Random Read IOPS vs. CPU Utilization

0

50

100

150

200

250

300

350

0K

500K

1,000K

1,500K

2,000K

2,500K

3,000K

3,500K

1 4 8 16 32

La
te

nc
y

(m
s)

IO
P

S

Queue Depth

4 KiB Random Read vs. Latency
(130 Clients)

Total IOPs Avg Latency (ms) Tail (99.99%) Latency (ms)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0K

500K

1,000K

1,500K

2,000K

2,500K

3,000K

3,500K

1 4 8 16 32

C
P

U
 U

til
iz

at
io

n

IO
P

S

Queue Depth

4 KiB Random Read vs. CPU Utilization
(130 Clients)

Total IOPs Total CPU %

17

Micron Reference Architecture

Table 10 summarizes the solution’s read performance. Based on the observed behavior, read-centric small-
block workloads should focus on sizing for no more than 80% CPU utilization. The actual queue depth and
client load attained before reaching this level of utilization will depend on the CPU model chosen. This RA’s
choice of an AMD EPYC 7742 CPU indicates the target sizing should be queue depth 16 for most use cases,
as moving to queue depth 32 provides no additional IOPS performance while incurring a heavier latency
penalty.

Table 10 – 4 KiB Random Read Results Summary

4 KiB Random 70% Read/30% Write Workload Analysis

Mixed read and write (70% read/30% write) performance of 130 FIO clients reached a maximum of 1.29 million 4 KiB
IOPS. Both read and write average latency showed an increase as the queue depth increased, reaching a maximum
average read latency of 2.08ms and a maximum average write latency of 5.89ms at queue depth 32.

Tail (99.99%) latency for both reads and writes increased rapidly as queue depth increased with read latency, going
from 6.80ms at queue depth 1 to 311ms at queue depth 32 and with write latency increasing from 11.76ms at queue
depth 1 to 365.3ms at queue depth 32 (Figure 7).

Figure 7 - 4 KiB Random 70/30 Read/Write IOPS vs. Latency

FIO Clients IOPS Average Latency 95% Latency 99.99% Latency
Average CPU

Utilization

QD 1 357,398 0.36ms 0.44ms 3.06ms 14.54%

QD 4 1,454,804 0.35ms 0.47ms 4.57ms 47.48%

QD 8 2,299,279 0.45ms 0.66ms 9.43ms 67.28%

QD 16 2,915,255 0.71ms 1.18ms 60.45ms 78.14%

QD 32 2,970,481 1.42ms 1.37ms 324.06ms 78.93%

0

50

100

150

200

250

300

350

400

0K

200K

400K

600K

800K

1,000K

1,200K

1,400K

1 4 8 16 32

La
te

nc
y

(m
s)

IO
P

S

Queue Depth

4 KiB 70/30 Read/Write vs. Latency
(130 Clients)

Total IOPs Avg Write Latency (ms)

Avg Read Latency (ms) Tail (99.99%) Write Latency (ms)

Tail (99.99%) Read Latency (ms)

18

Micron Reference Architecture

Low queue depth shows CPU utilization starting at 19.6% and increasing steadily to over 79.2% at queue
depth 32 (Figure 8).

Figure 8 – 4 KiB Random 70/30 Read/Write IOPS vs. CPU Utilization

Table 11 summarizes the solution’s 70%/30% read/write performance. Based on the observed behavior,
mixed I/O small-block workloads should level out at around 80% CPU utilization. The actual queue depth and
client load attained before reaching this level of utilization will depend on the CPU model chosen and the
actual read/write ratio. This RA’s choice of an AMD EPYC 7742 processor and 70%/30% read/write mix
indicates the target sizing should be a queue depth of 16 due to the 32% (read) and 29% (write) increase in
latency for an I/O performance gain of 13%.

FIO Clients IOPS
Avg Write

Latency (ms)
Avg Read

Latency (ms)
99.99% Write

Latency
99.99% Read

Latency
Avg. CPU
Utilization

QD 1 250,034 0.76ms 0.41ms 11.76ms 6.80ms 19.64%

QD 4 707,067 1.18ms 0.54ms 167.29ms 102.26ms 50.99%

QD 8 938,054 1.90ms 0.76ms 217.93ms 159.92ms 64.64%

QD 16 1,135,643 3.28ms 1.20ms 282.94ms 234.33ms 73.14%

QD 32 1,289,009 5.89ms 2.08ms 365.36ms 311.35ms 79.21%

Table 11 - 4 KiB Random 70/30 Read/Write Results Summary

4 MiB Object Workloads

The following sections describe the resulting performance measured for random, 4 MiB (4.0 x 220 byte) object
read and write data in both sequential (read and write) and random (reads only) IO scenarios.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0K

200K

400K

600K

800K

1,000K

1,200K

1,400K

1 4 8 16 32

C
P

U
 U

til
iz

at
io

n

IO
P

S

Queue Depth

4 KiB 70/30 Read/Write vs. CPU Utilization
(130 Clients)

Total IOPs Total CPU %

19

Micron Reference Architecture

Write tests measure performance using RADOS Bench workload instances consisting of a constant 16
threads per instance. The test increases load by instantiating additional RADOS Bench instances from two to
20 in base-2 increments.

Read tests executed measure performance by executing a fixed 10 RADOS Bench workload instance while
increasing the number of threads from 4 to 32 in base-2 increments.

Object Write Workload Analysis

Object write performance reached a maximum throughput of 21 GiB/s with an average latency of 57.6ms at a
workload level of 20 instances. Latency growth was consistent as the workload increased to 10 instances,
with a spike to 57ms at 20 instances — a 67% increase — while overall throughput increased by 15% (Figure
9).

Figure 9 – 4 MiB Object Write Throughput vs. Average Latency

CPU utilization was extremely low for this test, indicating it may be possible to scope a lower power CPU for large-
block, object-based use cases. Average CPU utilization for this RA never reached higher than 10% (Figure 10).

0

10

20

30

40

50

60

70

0

5

10

15

20

25

2 4 6 8 10 20

A
ve

ra
ge

 L
at

e
nc

y
(m

s)

T
hr

ou
gh

pu
t

(G
iB

/s
)

RADOS Bench Instances

4 MiB Object Write vs. Latency
(16 Threads)

BW (GiB/s) Avg Latency (ms)

20

Micron Reference Architecture

Figure 10 – 4 MiB Object Write Throughput vs. Average CPU Utilization

Table 12 summarizes the solution’s object write performance. Based on the observed behavior, write-centric object
workloads should focus on maximizing throughput by adding additional network interfaces as server PCIe
architecture permits. The actual queue depth and client load attained before reaching this level of throughput
depends on the CPU model chosen. This RA’s choice of an AMD EPYC 7742 CPU indicates the target sizing
should be in the range of 160 to 320 total threads for optimal performance.

Table 12 - 4 MiB Object Write Results Summary

Object Read Workload Analysis

Object read performance reached a maximum sequential throughput of 41 GiB/s – 85% of the aggregated available
bandwidth of the four-node cluster – with an average latency of 29.7ms attained at 32 threads, while maximum
random throughput achieved 43.7 GB/s – 91% of the aggregated available bandwidth of the four-node cluster – with
an average latency of 27.9ms at 32 threads. Latency growth was consistent as workload increased, indicating that
there were no apparent cases of resource constraints (Figure 11).

Clients Write Throughput Average Latency Average CPU Utilization

2 Instances 9.48 GiB/S 13.44ms 3.50%

4 Instances 13.71 GiB/S 18.75ms 5.22%

6 Instances 16.00 GiB/S 23.96ms 6.26%

8 Instances 17.05 GiB/S 29.76ms 6.79%

10 Instances 18.20 GiB/S 34.74ms 7.36%

20 Instances 21.80 GiB/S 57.59ms 9.53%

0%

20%

40%

60%

80%

100%

0

5

10

15

20

25

2 4 6 8 10 20

A
ve

ra
ge

 C
P

U
 U

til
iz

at
io

n

T
hr

ou
gh

pu
t

(G
iB

/s
)

RADOS Bench Instances

4 MiB Object Write vs. CPU Utilization
(16 Threads)

BW (GiB/s) CPU %

21

Micron Reference Architecture

Figure 11 – 4 MiB Object Read Throughput vs. Average Latency

CPU utilization was extremely low for this test. Average CPU utilization for this RA never exceeded 14%
(Figure 12).

Figure 12 – 4 MiB Object Read Throughput vs. Average CPU Utilization

Table 13 summarizes the solution’s object read performance. Based on the observed behavior, read-centric
object workloads should focus on maximizing throughput. The actual queue depth and client load attained
before reaching this level of throughput depends on the CPU model chosen. This RA’s choice of an AMD
EPYC 7742 CPU indicates the target sizing should be a in the range of 320 total threads for optimal
performance. More threads may provide additional performance, but is beyond the scope of testing performed
in this RA.

0

5

10

15

20

25

30

35

0

10

20

30

40

50

4 8 16 32

A
ve

ra
ge

 L
at

e
nc

y
(m

s)

T
hr

ou
gh

pu
t

(G
iB

/s
)

Threads per RADOS Bench Instance

4 MiB Object Read Throughput vs. Latency
(10 RADOS Bench Instances)

Random BW (GiB/s) Sequential BW (GiB/s)

Random Avg Latency (ms) Sequential Avg Latency (ms)

0%

20%

40%

60%

80%

100%

0

10

20

30

40

50

4 8 16 32

A
ve

ra
ge

 C
P

U
 U

til
iz

at
io

n

T
hr

ou
gh

pu
t

(G
iB

/s
)

Threads per RADOS Bench Instance

4 MiB Object Throughput vs. CPU Utilization
(10 RADOS Bench Instances)

Random BW (GiB/s) Sequential BW (GiB/s)

Random CPU % Sequential CPU %

22

Micron Reference Architecture

Table 13 – 4 MiB Object Read Results Summary

Summary
Micron designed this reference architecture for small-block random workloads. With over 2.97 million 4 KiB
random reads and 558,000 4 KiB random writes in a compact design based on four 1RU data nodes and one
or more 1RU monitor nodes and 307GB of total storage, this solution is a cost-effective, high-performance
storage solution suitable for a wide variety of application use cases.

While optimized for small-block workloads, this Ceph solution demonstrated excellent object performance as
well as offering aggregated throughput of up to 90% of the available network bandwidth. Taking typical
TCP/IP overhead into consideration, this solution, as configured, fully utilized the available throughput for
large-block workloads. Additional network interfaces installed in each storage node may support increased
Ceph object throughput, though this hypothesis was not tested.

Micron’s enterprise NVMe SSDs enable massive performance and provide a suitable solution for many
different types of storage solutions, such as Red Hat Ceph Storage software-defined storage area networks.
Whether you need to support general purpose use cases or you require ultra-fast responses for transactional
workloads or large, fast data analytics solutions, Micron has taken the guesswork out of building the right
solution.

Threads per
Instance

Random Sequential

Throughput
Average
Latency

Average
CPU%

Throughput
Average
Latency

Average
CPU%

4 20.74 GiB/s 6.89ms 3.24% 19.13 GiB/s 7.53ms 3.56%

8 32.59 GiB/s 8.94ms 4.99% 30.16 GiB/s 9.71ms 6.06%

16 41.56 GiB/s 14.38ms 6.83% 38.77 GiB/s 15.45ms 9.81%

32 43.77 GiB/s 27.91ms 7.46% 41.22 GiB/s 29.67ms 11.59%

23

Micron Reference Architecture

Appendix A

Ceph.conf

[client]

rbd_cache = False

rbd_cache_writethrough_until_flush = False

Please do not change this file directly since it is managed by Ansible and will be

overwritten

[global]

auth client required = none

auth cluster required = none

auth service required = none

auth supported = none

cephx require signatures = False

cephx sign messages = False

cluster network = 192.168.1.0/24

debug asok = 0/0

debug auth = 0/0

debug bluefs = 0/0

debug bluestore = 0/0

debug buffer = 0/0

debug client = 0/0

debug context = 0/0

debug crush = 0/0

debug filer = 0/0

debug filestore = 0/0

debug finisher = 0/0

debug hadoop = 0/0

debug heartbeatmap = 0/0

debug journal = 0/0

debug journaler = 0/0

debug lockdep = 0/0

debug log = 0

debug mds = 0/0

debug mds_balancer = 0/0

debug mds_locker = 0/0

debug mds_log = 0/0

debug mds_log_expire = 0/0

debug mds_migrator = 0/0

debug mon = 0/0

debug monc = 0/0

debug ms = 0/0

debug objclass = 0/0

debug objectcacher = 0/0

debug objecter = 0/0

debug optracker = 0/0

debug osd = 0/0

debug paxos = 0/0

debug perfcounter = 0/0

debug rados = 0/0

24

Micron Reference Architecture

debug rbd = 0/0

debug rgw = 0/0

debug rocksdb = 0/0

debug throttle = 0/0

debug timer = 0/0

debug tp = 0/0

debug zs = 0/0

fsid = 36a9e9ee-a7b8-4c41-a3e5-0b575f289379

mon host = 192.168.0.203

mon pg warn max per osd = 800

mon_allow_pool_delete = True

mon_max_pg_per_osd = 800

ms type = async

ms_crc_data = False

ms_crc_header = True

osd objectstore = bluestore

osd_pool_default_size = 2

perf = True

public network = 192.168.0.0/24

rocksdb_perf = True

[mon]

mon_max_pool_pg_num = 166496

mon_osd_max_split_count = 10000

[osd]

bluestore_csum_type = none

bluestore_extent_map_shard_max_size = 200

bluestore_extent_map_shard_min_size = 50

bluestore_extent_map_shard_target_size = 100

osd memory target = 9465613516

osd_max_pg_log_entries = 10

osd_min_pg_log_entries = 10

osd_pg_log_dups_tracked = 10

osd_pg_log_trim_min = 10

25

Micron Reference Architecture

Ceph-Ansible Configuration

All.yml

dummy:

fetch_directory: ~/ceph-ansible-keys

mon_group_name: mons

osd_group_name: osds

client_group_name: clients

mgr_group_name: mgrs

configure_firewall: False

ceph_repository_type: cdn

ceph_origin: repository

ceph_repository: rhcs

ceph_rhcs_version: 3

fsid: "36a9e9ee-a7b8-4c41-a3e5-0b575f289379"

generate_fsid: false

cephx: false

rbd_cache: "false"

rbd_cache_writethrough_until_flush: "false"

monitor_interface: enp99s0f1.501

public_network: 192.168.0.0/24

cluster_network: 192.168.1.0/24

osd_mkfs_type: xfs

osd_mkfs_options_xfs: -f -i size=2048

osd_mount_options_xfs: noatime,largeio,inode64,swalloc

osd_objectstore: bluestore

ceph_conf_overrides:

 global:

 auth client required: none

 auth cluster required: none

 auth service required: none

 auth supported: none

 osd objectstore: bluestore

 cephx require signatures: False

 cephx sign messages: False

 mon_allow_pool_delete: True

 mon_max_pg_per_osd: 800

 mon pg warn max per osd: 800

 ms_crc_header: True

 ms_crc_data: False

 ms type: async

 perf: True

 rocksdb_perf: True

 osd_pool_default_size: 2

 debug asok: 0/0

 debug auth: 0/0

 debug bluefs: 0/0

 debug bluestore: 0/0

26

Micron Reference Architecture

 debug buffer: 0/0

 debug client: 0/0

 debug context: 0/0

 debug crush: 0/0

 debug filer: 0/0

 debug filestore: 0/0

 debug finisher: 0/0

 debug hadoop: 0/0

 debug heartbeatmap: 0/0

 debug journal: 0/0

 debug journaler: 0/0

 debug lockdep: 0/0

 debug log: 0

 debug mds: 0/0

 debug mds_balancer: 0/0

 debug mds_locker: 0/0

 debug mds_log: 0/0

 debug mds_log_expire: 0/0

 debug mds_migrator: 0/0

 debug mon: 0/0

 debug monc: 0/0

 debug ms: 0/0

 debug objclass: 0/0

 debug objectcacher: 0/0

 debug objecter: 0/0

 debug optracker: 0/0

 debug osd: 0/0

 debug paxos: 0/0

 debug perfcounter: 0/0

 debug rados: 0/0

 debug rbd: 0/0

 debug rgw: 0/0

 debug rocksdb: 0/0

 debug throttle: 0/0

 debug timer: 0/0

 debug tp: 0/0

 debug zs: 0/0

 mon:

 mon_max_pool_pg_num: 166496

 mon_osd_max_split_count: 10000

 client:

 rbd_cache: false

 rbd_cache_writethrough_until_flush: false

 osd:

 osd_min_pg_log_entries: 10

 osd_max_pg_log_entries: 10

 osd_pg_log_dups_tracked: 10

 osd_pg_log_trim_min: 10

 bluestore_csum_type: none

 bluestore_extent_map_shard_min_size: 50

27

Micron Reference Architecture

 bluestore_extent_map_shard_max_size: 200

 bluestore_extent_map_shard_target_size: 100

disable_transparent_hugepage: "{{ false if osd_objectstore == 'bluestore' else true }}"

os_tuning_params:

 - { name: kernel.pid_max, value: 4194303 }

 - { name: fs.file-max, value: 26234859 }

 - { name: vm.zone_reclaim_mode, value: 0 }

 - { name: vm.swappiness, value: 1 }

 - { name: vm.min_free_kbytes, value: 1000000 }

 - { name: net.core.rmem_max, value: 268435456 }

 - { name: net.core.wmem_max, value: 268435456 }

 - { name: net.ipv4.tcp_rmem, value: 4096 87380 134217728 }

 - { name: net.ipv4.tcp_wmem, value: 4096 65536 134217728 }

ceph_tcmalloc_max_total_thread_cache: 134217728

ceph_docker_image: "rhceph/rhceph-3-rhel7"

ceph_docker_image_tag: "latest"

ceph_docker_registry: "registry.access.redhat.com"

containerized_deployment: False

Osds.yml

dummy:

osd_scenario: lvm

lvm_volumes:

 - data: data-lv1

 data_vg: vg_nvme0n1

 db: db-lv1

 db_vg: vg_nvme0n2

 - data: data-lv1

 data_vg: vg_nvme0n3

 db: db-lv1

 db_vg: vg_nvme0n4

 - data: data-lv1

 data_vg: vg_nvme1n1

 db: db-lv1

 db_vg: vg_nvme1n2

 - data: data-lv1

 data_vg: vg_nvme1n3

 db: db-lv1

 db_vg: vg_nvme1n4

 - data: data-lv1

 data_vg: vg_nvme3n1

 db: db-lv1

 db_vg: vg_nvme3n2

 - data: data-lv1

 data_vg: vg_nvme3n3

28

Micron Reference Architecture

 db: db-lv1

 db_vg: vg_nvme3n4

 - data: data-lv1

 data_vg: vg_nvme4n1

 db: db-lv1

 db_vg: vg_nvme4n2

 - data: data-lv1

 data_vg: vg_nvme4n3

 db: db-lv1

 db_vg: vg_nvme4n4

 - data: data-lv1

 data_vg: vg_nvme5n1

 db: db-lv1

 db_vg: vg_nvme5n2

 - data: data-lv1

 data_vg: vg_nvme5n3

 db: db-lv1

 db_vg: vg_nvme5n4

 - data: data-lv1

 data_vg: vg_nvme6n1

 db: db-lv1

 db_vg: vg_nvme6n2

 - data: data-lv1

 data_vg: vg_nvme6n3

 db: db-lv1

 db_vg: vg_nvme6n4

 - data: data-lv1

 data_vg: vg_nvme7n1

 db: db-lv1

 db_vg: vg_nvme7n2

 - data: data-lv1

 data_vg: vg_nvme7n3

 db: db-lv1

 db_vg: vg_nvme7n4

 - data: data-lv1

 data_vg: vg_nvme8n1

 db: db-lv1

 db_vg: vg_nvme8n2

 - data: data-lv1

 data_vg: vg_nvme8n3

 db: db-lv1

 db_vg: vg_nvme8n4

 - data: data-lv1

 data_vg: vg_nvme9n1

 db: db-lv1

 db_vg: vg_nvme9n2

 - data: data-lv1

 data_vg: vg_nvme9n3

 db: db-lv1

 db_vg: vg_nvme9n4

29

Micron Reference Architecture

 - data: data-lv1

 data_vg: vg_nvme10n1

 db: db-lv1

 db_vg: vg_nvme10n2

 - data: data-lv1

 data_vg: vg_nvme10n3

 db: db-lv1

 db_vg: vg_nvme10n4

 - data: data-lv1

 data_vg: vg_nvme0n5

 db: db-lv1

 db_vg: vg_nvme0n6

 - data: data-lv1

 data_vg: vg_nvme0n7

 db: db-lv1

 db_vg: vg_nvme0n8

 - data: data-lv1

 data_vg: vg_nvme1n5

 db: db-lv1

 db_vg: vg_nvme1n6

 - data: data-lv1

 data_vg: vg_nvme1n7

 db: db-lv1

 db_vg: vg_nvme1n8

 - data: data-lv1

 data_vg: vg_nvme3n5

 db: db-lv1

 db_vg: vg_nvme3n6

 - data: data-lv1

 data_vg: vg_nvme3n7

 db: db-lv1

 db_vg: vg_nvme3n8

 - data: data-lv1

 data_vg: vg_nvme4n5

 db: db-lv1

 db_vg: vg_nvme4n6

 - data: data-lv1

 data_vg: vg_nvme4n7

 db: db-lv1

 db_vg: vg_nvme4n8

 - data: data-lv1

 data_vg: vg_nvme5n5

 db: db-lv1

 db_vg: vg_nvme5n6

 - data: data-lv1

 data_vg: vg_nvme5n7

 db: db-lv1

 db_vg: vg_nvme5n8

 - data: data-lv1

 data_vg: vg_nvme6n5

30

Micron Reference Architecture

 db: db-lv1

 db_vg: vg_nvme6n6

 - data: data-lv1

 data_vg: vg_nvme6n7

 db: db-lv1

 db_vg: vg_nvme6n8

 - data: data-lv1

 data_vg: vg_nvme7n5

 db: db-lv1

 db_vg: vg_nvme7n6

 - data: data-lv1

 data_vg: vg_nvme7n7

 db: db-lv1

 db_vg: vg_nvme7n8

 - data: data-lv1

 data_vg: vg_nvme8n5

 db: db-lv1

 db_vg: vg_nvme8n6

 - data: data-lv1

 data_vg: vg_nvme8n7

 db: db-lv1

 db_vg: vg_nvme8n8

 - data: data-lv1

 data_vg: vg_nvme9n5

 db: db-lv1

 db_vg: vg_nvme9n6

 - data: data-lv1

 data_vg: vg_nvme9n7

 db: db-lv1

 db_vg: vg_nvme9n8

 - data: data-lv1

 data_vg: vg_nvme10n5

 db: db-lv1

 db_vg: vg_nvme10n6

 - data: data-lv1

 data_vg: vg_nvme10n7

 db: db-lv1

 db_vg: vg_nvme10n8

31

Micron Reference Architecture

Creating Multiple Namespaces

The Ceph recommendation for the volume storing the OSD database is no less than 4% of the size of the
OSD data volume, which is the number that we used.

python3.6 create_namespaces.py -ns 6001169368 250048724 6001169368 250048724

 6001169368 250048724 6001169368 250048724 -ls 512 -d /dev/nvme0 /dev/nvme1 /dev/nvme3

/dev/nvme4 /dev/nvme5 /dev/nvme6 /dev/nvme7 /dev/nvme8 /dev/nvme9 /dev/nvme10

create_namespaces.py

import argparse

import time

from subprocess import Popen, PIPE

def parse_arguments():

 parser = argparse.ArgumentParser(description='This file creates namespaces across

NVMe devices')

 parser.add_argument('-ns', '--namespace-size', nargs='+', required=True, type=str,

 help='List of size of each namespace in number of LBAs.

Specifying more than one will create '

 'multiple namespaces on each device.')

 parser.add_argument('-ls', '--lba-size', default='512', choices=['512', '4096'],

required=False, type=str,

 help='Size of LBA in bytes. Valid options are 512 and 4096

(Default: 512)')

 parser.add_argument('-d', '--devices', nargs='+', required=True, type=str,

 help='List of data devices to create OSDs on.')

 return {k: v for k, v in vars(parser.parse_args()).items()}

def execute_command(cmd):

 process = Popen(cmd, stdout=PIPE, stderr=PIPE)

 stdout, stderr = process.communicate()

 stdout = stdout.decode()

 stderr = stderr.decode()

 if stderr not in ('', None):

 print(stdout)

 raise Exception(stderr)

 else:

 return stdout

def remove_namespaces(devices, **_):

 for dev in devices:

 cmd = ['nvme', 'list-ns', dev]

 namespaces = [int(value[value.find('[') + 1:-value.find(']')].strip())

 for value in execute_command(cmd=cmd).strip().split('\n')]

32

Micron Reference Architecture

 for namespace in namespaces:

 cmd = ['nvme', 'detach-ns', dev, '-n', str(namespace+1), '-c', '1']

 print(execute_command(cmd=cmd))

 cmd = ['nvme', 'delete-ns', dev, '-n', str(namespace+1)]

 print(execute_command(cmd=cmd))

 time.sleep(0.1)

def create_namespaces(devices, namespace_size, lba_size):

 lba_key = '2' if lba_size == '4096' else '0'

 for dev in devices:

 for size in namespace_size:

 cmd = ['nvme', 'create-ns', dev, '-f', lba_key, '-s', size, '-c', size]

 print(execute_command(cmd=cmd))

 attach_namespaces(devices=devices, num_namespaces=len(namespace_size))

def attach_namespaces(devices, num_namespaces):

 for namespace in range(1, num_namespaces+1):

 for dev in devices:

 cmd = ['nvme', 'attach-ns', dev, '-n', str(namespace), '-c', '1']

 print(execute_command(cmd=cmd))

 time.sleep(1)

def run_test():

 arguments = parse_arguments()

 remove_namespaces(**arguments)

 create_namespaces(**arguments)

if __name__ == '__main__':

 run_test()

33

Micron Reference Architecture

Partitioning Drives for OSDs

python3.6 create_ceph_osd_partitions.py -o 1 -d /dev/nvme0n1 /dev/nvme1n1 /dev/nvme3n1

/dev/nvme4n1 /dev/nvme5n1 /dev/nvme6n1 /dev/nvme7n1 /dev/nvme8n1 /dev/nvme9n1

/dev/nvme10n1 /dev/nvme0n3 /dev/nvme1n3 /dev/nvme3n3 /dev/nvme4n3 /dev/nvme5n3

/dev/nvme6n3 /dev/nvme7n3 /dev/nvme8n3 /dev/nvme9n3 /dev/nvme10n3 /dev/nvme0n5

/dev/nvme1n5 /dev/nvme3n5 /dev/nvme4n5 /dev/nvme5n5 /dev/nvme6n5 /dev/nvme7n5

/dev/nvme8n5 /dev/nvme9n5 /dev/nvme10n5 /dev/nvme0n7 /dev/nvme1n7 /dev/nvme3n7

/dev/nvme4n7 /dev/nvme5n7 /dev/nvme6n7 /dev/nvme7n7 /dev/nvme8n7 /dev/nvme9n7

/dev/nvme10n7 -c /dev/nvme0n2 /dev/nvme1n2 /dev/nvme3n2 /dev/nvme4n2 /dev/nvme5n2

/dev/nvme6n2 /dev/nvme7n2 /dev/nvme8n2 /dev/nvme9n2 /dev/nvme10n2 /dev/nvme0n4

/dev/nvme1n4 /dev/nvme3n4 /dev/nvme4n4 /dev/nvme5n4 /dev/nvme6n4 /dev/nvme7n4

/dev/nvme8n4 /dev/nvme9n4 /dev/nvme10n4 /dev/nvme0n6 /dev/nvme1n6 /dev/nvme3n6

/dev/nvme4n6 /dev/nvme5n6 /dev/nvme6n6 /dev/nvme7n6 /dev/nvme8n6 /dev/nvme9n6

/dev/nvme10n6 /dev/nvme0n8 /dev/nvme1n8 /dev/nvme3n8 /dev/nvme4n8 /dev/nvme5n8

/dev/nvme6n8 /dev/nvme7n8 /dev/nvme8n8 /dev/nvme9n8 /dev/nvme10n8

The value of 1 was used for osds-per-device because we used multiple namespaces on the

same physical device. Each namespace only has 1 OSD.

create_ceph_osd_partitions.py

import argparse

import os

from subprocess import Popen, PIPE

class NoVGError(Exception):

 pass

class NoPVError(Exception):

 pass

def parse_arguments():

 parser = argparse.ArgumentParser(description='This file partitions devices for ceph

storage deployment')

 parser.add_argument('-o', '--osds-per-device', required=True, type=int, help='Number

of OSDs per data device')

 parser.add_argument('-d', '--data-devices', nargs='+', required=True, type=str,

 help='List of data devices to create OSDs on.')

 parser.add_argument('-c', '--cache-devices', nargs='+', required=False, type=str,

 help='Cache devices to store BlueStore RocksDB and write-ahead

log')

 parser.add_argument('-ws', '--wal-sz', required=False, type=int,

 help='Size of each write-ahead log on specified cache devices in

GiB')

 parser.add_argument('-dnr', '--do-not-remove', action='store_true',

 help='Do not remove old volumes (Disabled by default)')

 parser.add_argument('-dnc', '--do-not-create', action='store_true',

 help='Do not create new volumes (Disabled by default)')

34

Micron Reference Architecture

 return {k: v for k, v in vars(parser.parse_args()).items()}

def execute_command(cmd):

 process = Popen(cmd, stdout=PIPE, stderr=PIPE)

 stdout, stderr = process.communicate()

 if stderr not in ('', None, b''):

 print(stdout.decode())

 if b'Volume group' in stderr and b'not found' in stderr:

 raise NoVGError(stderr.decode())

 elif b'No PV found on device' in stderr:

 raise NoPVError(stderr.decode())

 else:

 raise Exception(stderr.decode())

 else:

 return stdout.decode()

def remove_lvm_volumes(data_devices, cache_devices, **_):

 dev_path = '/dev/'

 if cache_devices:

 device_list = data_devices + cache_devices

 else:

 device_list = data_devices

 vg_list = [('vg_{}'.format(device[len(dev_path):]), device) for device in

device_list]

 for vg, device in vg_list:

 vg_path = os.path.join(dev_path, vg)

 # Remove Logical Volumes

 try:

 for item in os.listdir(vg_path):

 cmd = ['lvremove', '-y', os.path.join(vg_path, item)]

 print(execute_command(cmd=cmd))

 except OSError as e:

 if e.errno == 2:

 pass

 else:

 raise e

 try:

 # Remove Volume Group

 cmd = ['vgremove', '-y', vg]

 print(f'Attempting to remove volume group {vg} for device {device}')

 print(execute_command(cmd=cmd))

 except NoVGError:

35

Micron Reference Architecture

 print(f'No volume group found for device {device}')

 pass

 try:

 # Remove Physical Volume

 cmd = ['pvremove', '-y', device]

 print(f'Attempting to remove physical volume for device {device}')

 print(execute_command(cmd=cmd))

 except NoPVError:

 print(f'No physical volume found for device {device}')

 pass

 # Wipe FS

 cmd = ['nvme', 'format', device, '-s', '1']

 print(f'Secure erasing device {device}')

 print(execute_command(cmd=cmd))

 #

 # # Create GPT

 # cmd = ['sudo', 'parted', device, '-s', 'mklabel', 'gpt']

 # print(f'Creating GPT label on device {device}')

 # print(execute_command(cmd=cmd))

def create_partitions(data_devices, osds_per_device, cache_devices, wal_sz, **_):

 # Create cache partitions

 if cache_devices:

 print('Creating cache device partitions')

 db_partitions = len(data_devices) * osds_per_device // len(cache_devices)

 create_cache_device_volumes(cache_devices=cache_devices, wal_sz=wal_sz,

db_partitions=db_partitions)

 # Create data partitions

 print('Creating data partitions')

 create_data_device_volumes(data_devices=data_devices,

osds_per_device=osds_per_device)

def create_cache_device_volumes(cache_devices, wal_sz, db_partitions):

 for dev in cache_devices:

 cmd = ['pvcreate', dev]

 print(execute_command(cmd=cmd))

 vg_name = 'vg_{}'.format(os.path.basename(dev))

 cmd = ['vgcreate', vg_name, dev]

 print(execute_command(cmd=cmd))

 gb_total = get_total_size(vg_name=vg_name)

 # If WAL was given

 if not wal_sz:

 wal_sz = 0

36

Micron Reference Architecture

 sz_per_db = (gb_total // db_partitions) - wal_sz

 for i in range(1, db_partitions+1):

 cmd = ['lvcreate', '-y', '--name', 'db-lv{}'.format(i), '--size',

'{}G'.format(sz_per_db), vg_name]

 print(execute_command(cmd=cmd))

 if wal_sz:

 cmd = ['lvcreate', '-y', '--name', 'wal-lv{}'.format(i), '--size',

'{}G'.format(wal_sz), vg_name]

 print(execute_command(cmd=cmd))

def create_data_device_volumes(data_devices, osds_per_device):

 for dev in data_devices:

 cmd = ['pvcreate', dev]

 print(f'Creating LVM physical volume on device {dev}')

 print(execute_command(cmd=cmd))

 vg_name = 'vg_{}'.format(os.path.basename(dev))

 cmd = ['vgcreate', vg_name, dev]

 print(f'Creating LVM volume group {vg_name} on {dev}')

 print(execute_command(cmd=cmd))

 gb_total = get_total_size(vg_name=vg_name)

 sz_per_osd = gb_total // osds_per_device

 for i in range(1, osds_per_device+1):

 cmd = ['lvcreate', '-y', '--name', f'data-lv{i}', '--size',

f'{sz_per_osd}G', vg_name]

 print(f'Creating {sz_per_osd}G LVM logical volume data-lv{i} on volume group

{vg_name}')

 print(execute_command(cmd=cmd))

def get_total_size(vg_name):

 cmd = ['vgdisplay', vg_name]

 stdout = execute_command(cmd=cmd)

 total_pe = 0

 pe_size = 0

 for line in stdout.split('\n'):

 if 'Total PE' in line:

 total_pe = int(line.split()[2])

 elif 'PE Size' in line:

 pe_size = int(float(line.split()[2]))

 gb_total = total_pe * pe_size // 1024

37

Micron Reference Architecture

 if gb_total != 0:

 return gb_total

 else:

 raise ValueError(f'Issue found when displaying volume groups. Total

PE:{total_pe}\tPE Size: {pe_size}')

def run_test():

 arguments = parse_arguments()

 if not arguments['do_not_remove']:

 # Remove All Old LVM Volumes

 remove_lvm_volumes(**arguments)

 if not arguments['do_not_create']:

 create_partitions(**arguments)

if __name__ == '__main__':

 run_test()

38

Micron Reference Architecture

About Micron
Micron Technology (Nasdaq: MU) is a world leader in innovative memory solutions. Through our global brands —
Micron, Crucial® and Ballistix® — our broad portfolio of high-performance memory technologies, including DRAM,
NAND, NOR Flash and 3D XPoint™ memory, is transforming how the world uses information to enrich life. Backed
by 40 years of technology leadership, our memory and storage solutions enable disruptive trends, including
artificial intelligence, 5G, machine learning and autonomous vehicles, in key market segments like data center,
networking, automotive, industrial, mobile, graphics and client. Our common stock trades on the Nasdaq under the
symbol MU.

About Red Hat
Red Hat is the world’s leading provider of open source software solutions, using a community-powered approach to
provide reliable and high-performing cloud, Linux, middleware, storage, and virtualization technologies. Red Hat also
offers award-winning support, training, and consulting services. As a connective hub in a global network of
enterprises, partners, and open source communities, Red Hat helps create relevant, innovative technologies that
liberate resources for growth and prepare customers for the future of IT.

About Ceph Storage
Ceph is an open source distributed object store and file system designed to provide excellent performance,
reliability, and scalability. It can:

 Free you from the expensive lock-in of proprietary, hardware-based storage solutions.

 Consolidate labor and storage costs into one versatile solution.

 Introduce cost-effective scalability on self-healing clusters based on standard servers and disks

Benchmark software and workloads used in performance tests may have been optimized for performance on specified components and have been documented here
where possible. Performance tests, such as HCIbench, are measured using specific computer systems, components, software, operations and functions. Any change to
any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products.

©2020 Micron Technology, Inc. All rights reserved. All information herein is provided on as “AS IS” basis without warranties of any kind, including any implied warranties,
warranties of merchantability or warranties of fitness for a particular purpose. Micron, the Micron logo, and all other Micron trademarks are the property of Micron
Technology, Inc. AMD, AMD EPYC and combinations thereof are trademarks of Advanced Micro Devices, Inc. All other trademarks are the property of their respective
owners. No hardware, software or system can provide absolute security and protection of data under all conditions. Micron assumes no liability for lost, stolen or
corrupted data arising from the use of any Micron product, including those products that incorporate any of the mentioned security features. Products are warranted only
to meet Micron’s production data sheet specifications. Products, programs and specifications are subject to change without notice. Dates are estimates only. All data and
statements within this document were developed by Micron with cooperation of the vendors used. All vendors have reviewed the content for accuracy.
Rev. A 02/2020, CCM004-676576390-11418

