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Executive Summary  
This document describes an example configuration of a performance-optimized Red Hat® Ceph® Storage 
(RHCS) cluster using Micron® NVMe™ SSDs, AMD EPYC™ 7002 x86 architecture-based rack-mount 
servers, and 100 Gb/E networking. 

It details the hardware and software building blocks used to construct this reference architecture (including 
the Red Hat Enterprise Linux OS configuration, network switch configurations, and Ceph tuning parameters) 
and shows the performance test results and measurement techniques for a scalable 4-node RHCS 
architecture. 

Optimized for block performance while also providing very high-performance object storage, this all-NVMe 
solution provides a rack-efficient design to enable: 

Faster deployment: The configuration has been pre-validated, optimized, and documented to enable faster 
deployment and faster performance than using default instructions and configuration. 

Balanced design: The right combination of NVMe SSDs, DRAM, processors, and networking ensures a 
balanced set of subsystems optimized for performance. 

Broad use: Complete documentation of tuning and performance characterization across multiple IO profiles 
for broad deployment across multiple uses.  

Our testing illustrates exceptional performance results for 4 KiB random block workloads and 4 MiB object 
workloads, as shown in Tables 1a and 1b.  

Table 1a and Table 1b - Performance Summary 

 

 

  

4 KiB Random Block Performance 

IO Profile IOPS Avg. Latency 

100% Read 2,970,481 1.42ms 

70%/30% R/W 1,289,009 
W: 5.89ms 
R: 2.08ms 

100% Writes 558,373 6.34ms 

4 MiB Object Performance 

IO Profile Throughput Avg. Latency 

100% Sequential Read 41.22 GiB/s 29.67ms 

100% Random Read 43.77 GiB/s 27.91ms 

100% Random Writes 21.8 GiB/s 57.59ms 

Micron Reference Architectures  
Micron Reference Architectures are optimized, pre-engineered, enterprise-leading 
solution templates for platforms that are co-developed between Micron and industry-
leading hardware and software companies.  

Designed and tested at Micron’s Storage Solutions Center, they provide end users, system 
builders, independent software vendors (ISVs), and OEMs with a proven template to build 
next-generation solutions with reduced time investment and risk. 
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Why Micron for this Solution 
Storage (SSDs and DRAM) represents a large portion of the value of today’s advanced server/storage 
solutions. Micron’s storage expertise starts at memory technology research, innovation, and design and 
extends to collaborating with customers and software providers on total data solutions. Micron develops and 
manufactures the storage and memory products that go into the enterprise solutions described here. 

Ceph Distributed Architecture Overview 
A Ceph storage cluster consists of multiple Ceph monitor nodes and data nodes for scalability, fault-
tolerance, and performance. Ceph stores all data as objects, regardless of the client interface used. Each 
node is based on industry-standard hardware and uses intelligent Ceph daemons that communicate with 
each other to: 

 Store, retrieve, and replicate data objects 

 Monitor and report on cluster health 

 Redistribute data objects dynamically 

 Ensure data object integrity  

 Detect and recover from faults and failures 

 

Figure 1 - Ceph Architecture 

To the application servers (Ceph clients) that read and write data, a Ceph storage cluster looks like a simple 
pool storage resource for data; however, the storage cluster performs many complex operations in a manner 
that is completely transparent to the application server. Ceph clients and Ceph object storage daemons 
(Ceph OSDs or OSDs) both use the Controlled Replication Under Scalable Hashing (CRUSH) algorithm for 
storage and retrieval of objects. 

For a Ceph client, the storage cluster is very simple. When a Ceph client reads or writes data (referred to as 
an IO context), it connects to a logical storage pool in the Ceph cluster. The figure above illustrates the overall 
Ceph architecture, with concepts described in the sections that follow. 

Clients write to Ceph storage pools while the CRUSH ruleset determines how placement groups get 
distributed across OSDs.  
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Pools: Ceph clients store data objects in logical, dynamic partitions called pools. Administrators can create 
pools for various reasons such as for particular data types, to separate block, file and object usage, 
application isolation, or to separate user groups (multitenant hosting). The Ceph pool configuration dictates 
the number of object replicas and the number of placement groups (PGs) within the pool. Ceph storage pools 
can be either replicated or erasure-coded, as appropriate, for the application and cost model. Additionally, 
pools can “take root” at any position in the CRUSH hierarchy, allowing placement on groups of servers with 
differing performance characteristics, which allows for the optimization of different storage workloads. 

Object storage daemons: Object storage daemons (OSDs) store data and handle data replication, recovery, 
backfilling, and rebalancing. They also provide some cluster state information to Ceph monitor nodes by 
checking other Ceph OSDs with a heartbeat mechanism. A Ceph storage cluster, configured to keep three 
replicas of every object, requires a minimum of three OSDs; two of which need to be operational to process 
write requests successfully. Ceph OSDs roughly correspond to a file system on a physical hard disk drive. 

Placement groups: Placement groups (PGs) are shards, or fragments, of a logical object pool that are 
composed of a group of Ceph OSDs that are in a peering relationship. PGs provide a means of creating 
replication or erasure coding groups of coarser granularities than on a per-object basis. A larger number of 
placement groups (e.g., 200 per OSD or more) leads to better balancing. 

CRUSH map: The CRUSH algorithm determines how to store and retrieve information from data nodes. 
CRUSH enables clients to communicate directly with OSDs on data nodes rather than through an 
intermediary service. By doing so, this removes a single point of failure from the cluster. The CRUSH map 
consists of a list of all OSDs and their physical location. Upon initial connection to a Ceph-hosted storage 
resource, the client contacts a Ceph monitor node for a copy of the CRUSH map, which enables direct 
communication between the client and the target OSDs. 

Ceph monitors (MONs): Before Ceph clients can read or write data, they must contact a Ceph MON to 
obtain the current CRUSH map. A Ceph storage cluster can operate with a single MON, but this introduces a 
single point of failure. For added reliability and fault tolerance, Ceph supports an odd number of monitors in a 
quorum (typically three or five for small to mid-sized clusters). Consensus among various MON instances 
ensures consistent knowledge about the state of the cluster. 
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Reference Architecture Overview 
Micron designed this reference architecture on the AMD EPYC 7002 architecture using dual AMD 7742 
processors. This processor architecture provides a performance-optimized server platform while yielding an 
open, cost-effective software-defined storage (SDS) platform suitable for a wide variety of use cases such as 
OpenStack™ cloud, video distribution, transcoding, and big data storage. 

AMD EPYC 7002 Processors: Utilizing the x86 architecture and built on 7nm technology, the AMD EPYC 
7002 Series of processors bring together up to 64 cores, 4TB memory capacity, support for eight channels of 
DDR4-3200, and 128 lanes of PCIe® 4 IO, all with the right ratios to enable best-in-class video transcoding 
workloads. Optimize costs by choosing one socket or two sockets with the optimal core count needed to run 
your database without compromising on processor features. 

The Micron 7300 PRO NVMe SSD offers excellent performance with lower power consumption and latencies. 
Capacity per rack unit (RU) is maximized with ten 7.68TB NVMe SSDs per 1U storage node. This reference 
architecture takes up six RUs consisting of one monitor node and four data nodes and one Ethernet switch. 
Using this reference architecture as a starting point, administrators can add additional data nodes 1RU and 
76TB at a time. 

Two Mellanox ConnectX®-5 100 Gb/E network cards per server handle data traffic— one for the client/public 
network traffic and a second for the internal Ceph replication network traffic. Mellanox ConnectX-4 50 Gb/E 
network cards are installed in both the clients and monitor nodes for connection to the storage networks. 

 

Figure 2 – Micron Ceph Reference Architecture 

Software 

This section details the software versions used in the reference architecture. 

Red Hat Ceph Storage 

Red Hat collaborates with the global open source Ceph community to develop new Ceph features, then 
packages changes into predictable, stable, enterprise-quality releases. Red Hat Ceph Storage uses the open-

Storage Nodes 
AMD EPYC 2 dual-socket x86 1U 
2x AMD 7742 CPUs 
512GB RAM 
10x 7.68TB 7300 MAX SSDs  

Monitor Nodes 
AMD EPYC single-socket x86 1U 
1x AMD 7551P CPU 
256GB RAM 
 

Network Switches: 
1x 100 Gb/E, 32x QSFP28 ports 

Note:  Micron performed all tests using a single monitor node. Production deployments should 
use at least three monitor nodes to provide adequate redundancy to the solution. 
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source Ceph Luminous version 12.2, to which Red Hat was a leading code contributor. This reference 
architecture uses version 3.3 of Red Hat Ceph Storage. 

As a self-healing, self-managing, unified storage platform with no single point of failure, Red Hat Ceph 
Storage decouples software from hardware to support block, object, and file storage services on standard x86 
servers, using either HDDs and/or SSDs, significantly lowering the cost of storing enterprise data. 
OpenStack® also uses Red Hat Ceph Storage along with services, including Nova, Cinder, Manila, Glance, 
Keystone, and Swift, and it offers user-driven storage lifecycle management. Ceph is a highly tunable, 
extensible, and configurable architecture, well suited for archival, rich media, and cloud infrastructure 
environments. 

Among many of its features, Red Hat Ceph Storage provides the following advantages to this reference 
architecture: 

 Block storage integrated with OpenStack, Linux, and KVM hypervisor 

 Data durability via erasure coding or replication 

 Red Hat Ansible automation-based deployment 

 Advanced monitoring and diagnostic information with an on-premise monitoring dashboard  

 Availability of service-level agreement (SLA)-backed technical support 

 Red Hat Enterprise Linux (included with subscription) and the backing of a global open source community 

Red Hat Enterprise Linux 

Enterprises in need of a high-performance operating system environment depend on Red Hat® Enterprise 
Linux® (RHEL) for scalable, fully supported, open-source solutions. Micron uses version 7.7 of Red Hat 
Enterprise Linux in this reference architecture due to its performance, reliability, and security, as well as its 
broad usage across many industries. Supported by leading hardware and software vendors, RHEL provides 
broad platform scalability (from workstations to servers to mainframes) and a consistent application 
environment across physical, virtual, and cloud deployments. 

Software by Node Type 

Table 2 below shows the software and version numbers used in the Ceph monitor and storage nodes. 

 

 

Table 2 - Software Deployed on Ceph Data and Monitor Nodes 

The software used on the load generation client is the same as that used on the Ceph data and monitor 
nodes. All block testing used the open-source FIO storage load generation tool, version 3.1.0, leveraging the 
librbd module. 

Hardware by Node Type 

Ceph Data Node 

The Ceph data nodes in this RA host two or more OSDs per physical SSD. While this RA used a server product 
available for purchase from one vendor, this RA does not make any recommendations regarding any specific 

Operating System Red Hat Enterprise Linux  7.7 

Storage Software Red Hat Ceph Storage 3.3 

NIC Driver Mellanox® OFED Driver  4.7-1.0.0.0 
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server vendor or implementation, focusing on the overall solution architecture built around AMD EPYC 7002 
processors and architecture.1 

Mellanox ConnectX-5 network controller offers dual ports of 10/25/50/100 Gb/s Ethernet connectivity and 
advanced offload capabilities while delivering high bandwidth, low latency, and high computation efficiency for 
high performance, data-intensive, and scalable HPC, cloud, data analytics, database, and storage platforms. 

Table 3 provides the details for the server architecture used for this Ceph data node role. 

 

 

 

 

 

Table 3 - Storage Node Hardware Details 

Ceph Monitor Node 

The Ceph monitor node in this RA is an AMD EPYC 7001 architecture server. As with the Ceph data node, 
this RA does not make any recommendations regarding any specific server vendor or implementation, 
focusing on the overall solution architecture built around AMD processors and architecture.  

ConnectX-4 EN network controller offers dual ports of 10/25/50/100 Gb/s Ethernet connectivity and advanced 
offload capabilities while delivering high bandwidth, low latency, and high computation efficiency for high 
performance, data-intensive, and scalable HPC, cloud, data analytics, database, and storage platforms. 

Table 4 below provides the details for the server architecture used for this Ceph monitor node role. 

 

 

 

 

Table 4 -Monitor Node Hardware Details 

  

 
1 2nd Gen AMD EPYC processors used on motherboards designed for the 1st Gen AMD EPYC processor 
require a BIOS update from the server manufacturer.  The EPYC 7742, 7642 and 7542 are 225w parts and 
require additional updates. Contact the server manufacturer for support. For PCIe® 4 and DDR4-3200 memory 
support, contact the server manufacturer. A motherboard designed for 2nd Gen EPYC processors is required 
to enable all available functionality. ROM-06a 

 

Server Type AMD x86 (dual-socket) 1U with PCIe Gen 3/4 

CPU (x2) 
AMD EPYC 7742 
(64 cores, 2.25GHz base) 

DRAM (x16) Micron 32GB DDR4-2666 MT/s, 512GB total per node 

NVMe (x10) Micron 7300 PRO NVMe SSDs, 7.68TB each 

SATA (OS) Micron 2200 BOOT (NVMe) 

Network 2x Mellanox ConnectX-5 100 Gb/E dual-port (MCX516A-CCAT) 

Server Type AMD x86 (single-socket) 1U with PCIe Gen3 

CPU (x1) 
1x AMD EPYC 7551P 
(32 cores, 2.0 GHz base) 

DRAM (x8) Micron 32GB DDR4-2400 MT/s, 256GB total per node 

SATA (OS) 64GB SATA Disk on Motherboard 

Network 1x Mellanox ConnectX-4 50 Gb/E single-port (MC4X413A-GCAT) 
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Micron Components Used 

Micron 7300 PRO NVMe SSDs 

This RA uses the 7300 PRO 7.68TB NVMe SSD. The Micron 7300 series of NVMe SSDs is Micron’s 
inaugural entry in the mainstream NVMe SSD segment. Built upon the proven 96-layer NAND technology and 
the latest NVMe architecture, the 7300 provides up to 6X the performance of SATA at a reasonable cost. 
Available in both U.2 (7mm) and M.2 (80mm,110mm) form factors and capacities ranging from 400MB to 
7.68TB, the 7300 is the right SSD for a wide range of uses, including server boot, caching, database, and 
emerging applications.  

Table 5 below summarizes the 7300 PRO 7.68TB specifications. 

 

 

 

 

 

Note: GB/s measured using 128K transfers, IOPS measured using 4K transfers.  All data is steady state. Complete MTTF information can be 
provided by your Micron sales associate. 

Table 5 - 7300 PRO 7.68TB Specifications Summary 

Network Switches 

This RA uses one 100 Gb/E switch (32x QSFP28 ports each). For production purposes, Micron recommends 
using two switches for redundancy purposes, with each switch partitioned to support two network segments 
— one for the client data transfer and the second for the Ceph intercluster storage network. Switches used in 
this RA use the Broadcom Tomahawk ® switch architecture (Table 6). 

 

 
Table 6 - Network Switches (Hardware and Software) 

The SSE-C3632S Layer 2/3 Ethernet Switch provides an open networking-compliant solution, providing the 
ability to maximize the efficient and flexible use of valuable data center resources while providing an ideal 
platform for managing and maintaining those resources in a manner in tune with the needs of an organization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Model 7300 PRO Interface PCIe Gen3 x4 

Form Factor U.2 Capacity 7.68TB 

NAND Micron 3D TLC MTTF 2M device hours 

Sequential Read 3.0 GB/s Random Read 520,000 IOPS 

Sequential Write 1.8 GB/s Random Write 85,000 IOPS 

Endurance 22.4PB Status Production 

Model  Supermicro SSE-C3632SR 

Software Cumulus™ Linux 3.4.2 



 
 
 
 

10 

Micron Reference Architecture 

 

Planning Considerations 
The following topics provide information to enhance the overall experience of the solution and ensure the 
solution is scalable while maximizing performance. 

Number of Ceph Storage Nodes 

At least three (3) storage nodes must be present in a Ceph cluster to become eligible for Red Hat technical 
support. While this RA uses four data nodes, additional nodes can provide scalability and redundancy. Four 
(4) storage nodes represent a suitable starting point as a building block for scaling up to larger deployments. 

Number of Ceph Monitor Nodes 

A Ceph storage cluster deployed for production workloads should have at least three (3) monitor nodes on 
separate hardware for added resiliency. These nodes do not require high-performance CPUs. They do benefit 
from having SSDs to store the monitor map data. For testing purposes, this solution uses a single monitor 
node.. 

Replication Factor 

NVMe SSDs have high reliability, with high MTTF and low bit error rate. Micron recommends using a 
minimum replication factor of two in production when deploying OSDs on NVMe versus a replication factor of 
three, which is common with legacy HDD-based storage. 

CPU Sizing 

Ceph OSD processes can consume large amounts of CPU while doing small block operations. Consequently, 
a higher CPU core count results in higher performance for I/O-intensive workloads.  

For throughput-intensive workloads characterized by large sequential object-based I/O, Ceph performance is 
more likely to be bound by the maximum network bandwidth of the cluster. CPU sizing is less impactful. 

Ceph Configuration Tuning 

Tuning Ceph for NVMe devices can be complex. The ceph.conf settings used in this reference architecture 
optimize the solution for small block random performance (see Appendix A). 

Networking 

A 25 Gb/E network enables the solution to leverage the maximum block performance benefits of a NVMe-
based Ceph cluster. For throughput-intensive workloads, Micron recommends 50 Gb/E or faster throughput 
connections. 
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OS Tuning/NUMA 

This RA used Ceph-Ansible for OS tuning and applied the following OS settings: 

disable_transparent_hugepage: true 

kernel.pid_max, value: 4,194,303 

fs.file-max, value: 26,234,859 

vm.zone_reclaim_mode, value: 0 

vm.swappiness, value: 1 

vm.min_free_kbytes, value: 1,000,000 

net.core.rmem_max, value: 268,435,456 

net.core.wmem_max, value: 268,435,456 

net.ipv4.tcp_rmem, value: 4096 87,380 134,217,728 

net.ipv4.tcp_wmem, value: 4096 65,536 134,217,728 

ceph_tcmalloc_max_total_thread_cache: 134,217,728 

Due to the unbalanced nature of the servers concerning PCIe lane assignments (four NVMe devices and both 
NICs attach to CPU 1, while the other six NVMe devices attach CPU 2), this RA did not use any NUMA tuning 
during testing. 

Irqbalance was active for all tests and did a reasonable job balancing across CPUs. 

Measuring Performance 

4 KiB Random Workloads 

Small block testing used the FIO synthetic I/O generation tool and the Ceph RADOS Block Device (RBD) 
driver to generate 4 KiB random I/O workloads. 

The test configuration consisted of initially creating 130 RBD images, resulting in each RBD image size of 
75GB and a total of 9.75TB of data. Implementing a 2x replicated pool resulted in 19.5TB of total data stored 
within the cluster.  

The four data nodes have a combined total of 2TB of DRAM (512GB per server), which is 10.2% of the 
dataset size. 

Random write tests scaled the number of FIO clients running against the Ceph cluster at a fixed queue depth 
of 32. (A client is a single instance of FIO running on a load generation server.) Using a queue depth of 32 
simulates an active RDB image consumer and allows tests to scale up to a high client count. The number of 
clients scale from 10 clients to 130 clients. The test used 10 load generation servers with an equal number of 
FIO instances on each load generation server. 

Random reads and 70/30 read/write tests all used 130 FIO clients and their associated RBD images, scaling 
the queue depth per FIO client from 1 to 32 in base-2 increments. It is important to use all 130 FIO clients for 
these tests to ensure that tests access the entire 19.5TB dataset; otherwise, Linux filesystem caching can 
skew results, resulting in a false report of higher performance. 

Three test iterations executed for 10 minutes, with a 2-minute ramp-up time, for a total of 12-minute per test 
iteration or 36 minutes per pass. Before each iteration, the test script clears all Linux filesystem caches. The 
results reported are the mathematical average across all test runs. 
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4MB Object Workloads 

Object testing utilizes the RADOS Bench tool provided as part of the Ceph package to measure object I/O 
performance. This benchmark reports throughput performance in GiB/s and represents the best-case object 
performance. Object I/O uses a RADOS gateway service operating on each load generation server. The 
configuration of RADOS gateway is beyond the scope of this RA. 

To measure object write throughput, each test executed RADOS Bench with a “threads” value of 16 on a load 
generation server writing directly to a Ceph storage pool using 4MB objects. RADOS Bench executed on a 
varying number of load generation servers scaled between 2 to 20 in base-2 increments. 

To measure object read throughput, 10 RADOS Bench instances executed 4MB object reads against the 
storage pool while scaling RADOS Bench thread count between one thread and 32 threads in base-2 
increments. 

Five test iterations executed for 10 minutes. Before each iteration, the test script cleared all Linux filesystem 
caches. The results reported are the mathematical average across all test runs.  

Baseline Performance Test Methodology 
Storage and network performance is baseline tested without Ceph software to 
determine the theoretical hardware performance maximums using FIO (storage) and 
iPerf (network) benchmark tools. Each storage test executes one locally run FIO 
instance per NVMe drive (10 total NVMe drives) simultaneously. Each network test 
executes four concurrent iperf3 instances from each data node and monitor node to 
each other and from each client to each data server. The results represent the 
expected maximum performance possible using the specific server and network 
components in the test environment.  

Storage Baseline Results 

The baseline block storage test executed FIO across all 10 7300 PRO NVMe SSDs 
on each storage node. FIO instances executed 4 KiB random writes at a queue 
depth of 64 per FIO instance. Table 7 provides the average IOPS and latency for all 
storage baseline testing. 

Storage Node Write IOPS Write Avg. Latency Read IOPS Read Avg. Latency 

Node 1 893,225 2.93ms 1,185,665 2.18ms 

Node 2 879,912 2.97ms 1,156,447 2.24ms 

Node 3 860,289 3.06ms 1,169,932 2.25ms 

Node 4 884,130 2.99ms 1,155,963 2.29ms 

Table 7 - Baseline FIO 4 KiB Random Workloads 

  

10 Micron 7300 PRO 

SSDs deliver 1.1 million  

4 KiB random read IOPS 

and 880,000 4 KiB 

random write IOPS in 

baseline FIO testing on a 

single storage server. 
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The baseline object storage test executed FIO across all 10 7300 PRO NVMe SSDs on each node. FIO 
instances executed 128 KiB sequential writes at a queue depth of eight per FIO instance. FIO instances 
executed 4 MiB sequential reads at a queue depth of eight per FIO instance. Table 8 provides the average 
throughput and latency results. 

Storage Node Write Throughput Write Avg. Latency Read Throughput Read Avg. Latency 

Node 1 10.776 GiB/s 14.53ms 14.059 GiB/s 11.11ms 

Node 2 11.257 GiB/s 13.92ms 14.413 GiB/s 10.84ms 

Node 3 10.133 GiB/s 15.45ms 13.165 GiB/s 11.86ms 

Node 4 10.521 GiB/s 14.90ms 13.234 GiB/s 11.80ms 

Table 8 - Baseline FIO 128 KiB Sequential Workloads 

Network Baseline Results 

Network connectivity tests used six concurrent iPerf3 instances running for one minute. Each iPerf3 instance 
on each server transmitted data to all other servers. 

All storage nodes with 100 GbE NICs averaged 96+ Gb/s during testing. Monitor nodes and clients with 50 
GbE NICs averaged 45+ Gb/s during testing. 

Ceph Performance Results and Analysis 
The results detailed below are based on a 2x replicated storage pool using version 3.3 of Red Hat Ceph 
Storage with 8192 placement groups. 

Tests used 130 RBD images at 75GB each, providing 9.75TB of data on a 2x replicated pool (19.5TB of total 
data). Random write tests used a constant queue depth of 32, increasing the number of simultaneous clients 
from 10 to 130 in increments of 10. A queue depth of 32 simulated a reasonably active RDB image consumer 
and enabled tests to scale to a high number of clients. 

Random read and 70/30 R/W tests executed an I/O load against all 130 RBD images, scaling up the queue 
depth per client from 1 to 32 in base-2 increments. Using130 clients for every test ensured that Ceph used 
the Linux filesystem cache equally on all tests. 

For each I/O workload described below, five 10-minute tests executed with a five-minute ramp-up time for 
each test. The results reported in the sections below is the mathematical average of each five-test pass. 

Small Block Random Workload Testing 

The following sections describe the resulting performance measured for random 4 KiB (4.0 x 210 byte) block 
read, write, and mixed read/write I/O tests. 

4 KiB 100% Random Write Workloads 

Write performance reached a maximum of 577K 4 KiB IOPS. Average latency showed a linear increase as 
the number of clients increased, reaching a maximum average latency of 10.59ms at 190 clients. Tail 
(99.99%) latency increased smoothly across the entire 200 clients tested, reaching a maximum of 475.8ms at 
200 clients (Figure 3). 
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Figure 3 – 4 KiB Random Write IOPS vs. Latency  

Ceph data nodes depend heavily on CPU for performance. Low client load shows CPU utilization starting at 
50% with 10 clients and increasing steadily to over 66% at a load of 190 clients (Figure 4). 

 

Figure 4 – 4 KiB Random Write IOPS vs. CPU Utilization 
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Table 9 summarize the solution’s write performance. Based on the observed behavior, write-centric small-
block workloads should focus on sizing for no more than 85% CPU utilization. The actual number of clients 
attained before reaching this level of utilization depends on the CPU model chosen. This RA’s choice of an 
AMD EPYC 7742 CPU indicates this solution can scale to 200 clients. 

Table 9 – 4 KiB Random Write Results Summary 

4 KiB Random Read Workload Analysis 

Read performance of 130 FIO clients reached a maximum of 2.97 million 4 KiB IOPS. Average latency showed an 
increase as the queue depth increased, reaching a maximum average latency of only 1.4ms at queue depth 32. 
Average latency doubles moving from queue depth 16 to queue depth 32 while generating the same IOPS 
performance. Tail (99.99%) latency increased steadily up to a queue depth of 8, then spiked upward at queue depth 
of 16 (16% increase) and then again at queue depth of 32, going from 60.45ms at queue depth 16 to 324ms at 
queue depth 32 — an increase of over 435% (Figure 5). 

FIO Clients IOPS 
Average 
Latency 

95% Latency 99.99% Latency 
Average  

CPU Utilization 

10 Clients  319,569  1.00ms 1.22ms 85.25ms 38.58% 

20 Clients  431,395  1.48ms 4.45ms 103.38ms 50.73% 

30 Clients  473,962  2.03ms 6.98ms 135.14ms 55.06% 

40 Clients  499,710  2.57ms 8.98ms 159.11ms 57.56% 

50 Clients  517,595  3.10ms 10.90ms 174.66ms 59.35% 

60 Clients  532,444  3.62ms 12.81ms 194.75ms 60.84% 

70 Clients  542,822  4.15ms 14.82ms 208.36ms 61.83% 

80 Clients  551,303  4.67ms 16.86ms 222.67ms 62.73% 

90 Clients  548,208  5.30ms 20.10ms 242.65ms 62.57% 

100 Clients  548,275  5.89ms 23.69ms 265.03ms 62.74% 

110 Clients  558,373  6.34ms 25.15ms 268.90ms 64.11% 

120 Clients  555,093  6.97ms 29.74ms 291.73ms 64.00% 

130 Clients  547,958  7.66ms 35.09ms 314.67ms 63.89% 

140 Clients  552,283  8.18ms 37.95ms 315.92ms 64.33% 

150 Clients  564,318  8.56ms 40.26ms 315.62ms 65.52% 

160 Clients  561,645  9.18ms 44.09ms 341.04ms 65.50% 

170 Clients  565,150  9.69ms 46.96ms 347.60ms 65.96% 

180 Clients  561,560  10.35ms 52.06ms 378.22ms 65.64% 

190 Clients  577,622  10.59ms 51.33ms 416.40ms 66.94% 

200 Clients  577,459  11.15ms 55.04ms 475.80ms 66.23% 
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Figure 5 - 4 KiB Random Read IOPS vs. Latency 

Low queue depth showed CPU utilization starting at 14.5% at queue depth of 1 and increasing steadily to 
over 78% at a queue depth of 32 (Figure 6). 

 

Figure 6 – 4 KiB Random Read IOPS vs. CPU Utilization 
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Table 10 summarizes the solution’s read performance. Based on the observed behavior, read-centric small-
block workloads should focus on sizing for no more than 80% CPU utilization. The actual queue depth and 
client load attained before reaching this level of utilization will depend on the CPU model chosen. This RA’s 
choice of an AMD EPYC 7742 CPU indicates the target sizing should be queue depth 16 for most use cases, 
as moving to queue depth 32 provides no additional IOPS performance while incurring a heavier latency 
penalty. 

Table 10 – 4 KiB Random Read Results Summary 

4 KiB Random 70% Read/30% Write Workload Analysis 

Mixed read and write (70% read/30% write) performance of 130 FIO clients reached a maximum of 1.29 million 4 KiB 
IOPS. Both read and write average latency showed an increase as the queue depth increased, reaching a maximum 
average read latency of 2.08ms and a maximum average write latency of 5.89ms at queue depth 32.  

Tail (99.99%) latency for both reads and writes increased rapidly as queue depth increased with read latency, going 
from 6.80ms at queue depth 1 to 311ms at queue depth 32 and with write latency increasing from 11.76ms at queue 
depth 1 to 365.3ms at queue depth 32 (Figure 7). 

 

Figure 7 -  4 KiB Random 70/30 Read/Write IOPS vs. Latency 

FIO Clients IOPS Average Latency 95% Latency 99.99% Latency 
Average CPU 

Utilization 

QD 1 357,398 0.36ms 0.44ms 3.06ms 14.54% 

QD 4 1,454,804 0.35ms 0.47ms 4.57ms 47.48% 

QD 8 2,299,279 0.45ms 0.66ms 9.43ms 67.28% 

QD 16 2,915,255 0.71ms 1.18ms 60.45ms 78.14% 

QD 32 2,970,481 1.42ms 1.37ms 324.06ms 78.93% 
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Low queue depth shows CPU utilization starting at 19.6% and increasing steadily to over 79.2% at queue 
depth 32 (Figure 8). 

 

Figure 8 – 4 KiB Random 70/30 Read/Write IOPS vs. CPU Utilization  

Table 11 summarizes the solution’s 70%/30% read/write performance. Based on the observed behavior, 
mixed I/O small-block workloads should level out at around 80% CPU utilization. The actual queue depth and 
client load attained before reaching this level of utilization will depend on the CPU model chosen and the 
actual read/write ratio. This RA’s choice of an AMD EPYC 7742 processor and 70%/30% read/write mix 
indicates the target sizing should be a queue depth of 16 due to the 32% (read) and 29% (write) increase in 
latency for an I/O performance gain of 13%. 

FIO Clients IOPS 
Avg Write 

Latency (ms) 
Avg Read 

Latency (ms) 
99.99% Write 

Latency 
99.99% Read 

Latency 
Avg. CPU 
Utilization 

QD 1 250,034 0.76ms 0.41ms 11.76ms 6.80ms 19.64% 

QD 4 707,067 1.18ms 0.54ms 167.29ms 102.26ms 50.99% 

QD 8 938,054 1.90ms 0.76ms 217.93ms 159.92ms 64.64% 

QD 16 1,135,643 3.28ms 1.20ms 282.94ms 234.33ms 73.14% 

QD 32 1,289,009 5.89ms 2.08ms 365.36ms 311.35ms 79.21% 

Table 11 - 4 KiB Random 70/30 Read/Write Results Summary 

4 MiB Object Workloads 

The following sections describe the resulting performance measured for random, 4 MiB (4.0 x 220 byte) object 
read and write data in both sequential (read and write) and random (reads only) IO scenarios.  
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Write tests measure performance using RADOS Bench workload instances consisting of a constant 16 
threads per instance. The test increases load by instantiating additional RADOS Bench instances from two to 
20 in base-2 increments. 

Read tests executed measure performance by executing a fixed 10 RADOS Bench workload instance while 
increasing the number of threads from 4 to 32 in base-2 increments. 

Object Write Workload Analysis 

Object write performance reached a maximum throughput of 21 GiB/s with an average latency of 57.6ms at a 
workload level of 20 instances. Latency growth was consistent as the workload increased to 10 instances, 
with a spike to 57ms at 20 instances — a 67% increase — while overall throughput increased by 15% (Figure 
9). 

 

Figure 9 – 4 MiB Object Write Throughput vs. Average Latency 

CPU utilization was extremely low for this test, indicating it may be possible to scope a lower power CPU for large-
block, object-based use cases. Average CPU utilization for this RA never reached higher than 10% (Figure 10). 
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Figure 10 – 4 MiB Object Write Throughput vs. Average CPU Utilization 

Table 12 summarizes the solution’s object write performance. Based on the observed behavior, write-centric object 
workloads should focus on maximizing throughput by adding additional network interfaces as server PCIe 
architecture permits. The actual queue depth and client load attained before reaching this level of throughput 
depends on the CPU model chosen. This RA’s choice of an AMD EPYC 7742 CPU indicates the target sizing 
should be in the range of 160 to 320 total threads for optimal performance. 

 

 

 

 

 

Table 12 - 4 MiB Object Write Results Summary 

Object Read Workload Analysis 

Object read performance reached a maximum sequential throughput of 41 GiB/s – 85% of the aggregated available 
bandwidth of the four-node cluster – with an average latency of 29.7ms attained at 32 threads, while maximum 
random throughput achieved 43.7 GB/s – 91% of the aggregated available bandwidth of the four-node cluster – with 
an average latency of 27.9ms at 32 threads. Latency growth was consistent as workload increased, indicating that 
there were no apparent cases of resource constraints (Figure 11). 

 

Clients Write Throughput Average Latency Average CPU Utilization 

2 Instances 9.48 GiB/S 13.44ms 3.50% 

4 Instances 13.71 GiB/S 18.75ms 5.22% 

6 Instances 16.00 GiB/S 23.96ms 6.26% 

8 Instances 17.05 GiB/S 29.76ms 6.79% 

10 Instances 18.20 GiB/S 34.74ms 7.36% 

20 Instances 21.80 GiB/S 57.59ms 9.53% 
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Figure 11 – 4 MiB Object Read Throughput vs. Average Latency 

CPU utilization was extremely low for this test. Average CPU utilization for this RA never exceeded 14% 
(Figure 12).  

 

Figure 12 – 4 MiB Object Read Throughput vs. Average CPU Utilization 

Table 13 summarizes the solution’s object read performance. Based on the observed behavior, read-centric 
object workloads should focus on maximizing throughput. The actual queue depth and client load attained 
before reaching this level of throughput depends on the CPU model chosen. This RA’s choice of an AMD 
EPYC 7742 CPU indicates the target sizing should be a in the range of 320 total threads for optimal 
performance. More threads may provide additional performance, but is beyond the scope of testing performed 
in this RA. 
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Table 13  – 4 MiB Object Read Results Summary 

Summary 
Micron designed this reference architecture for small-block random workloads. With over 2.97 million 4 KiB 
random reads and 558,000 4 KiB random writes in a compact design based on four 1RU data nodes and one 
or more 1RU monitor nodes and 307GB of total storage, this solution is a cost-effective, high-performance 
storage solution suitable for a wide variety of application use cases.  

While optimized for small-block workloads, this Ceph solution demonstrated excellent object performance as 
well as offering aggregated throughput of up to 90% of the available network bandwidth. Taking typical 
TCP/IP overhead into consideration, this solution, as configured, fully utilized the available throughput for 
large-block workloads. Additional network interfaces installed in each storage node may support increased 
Ceph object throughput, though this hypothesis was not tested. 

Micron’s enterprise NVMe SSDs enable massive performance and provide a suitable solution for many 
different types of storage solutions, such as Red Hat Ceph Storage software-defined storage area networks. 
Whether you need to support general purpose use cases or you require ultra-fast responses for transactional 
workloads or large, fast data analytics solutions, Micron has taken the guesswork out of building the right 
solution. 

  

Threads per 
Instance 

Random Sequential 

Throughput 
Average 
Latency 

Average 
CPU% 

Throughput 
Average 
Latency 

Average 
CPU% 

4 20.74 GiB/s 6.89ms 3.24% 19.13 GiB/s 7.53ms 3.56% 

8 32.59 GiB/s 8.94ms 4.99% 30.16 GiB/s 9.71ms 6.06% 

16 41.56 GiB/s 14.38ms 6.83% 38.77 GiB/s 15.45ms 9.81% 

32 43.77 GiB/s 27.91ms 7.46% 41.22 GiB/s 29.67ms 11.59% 



 
 
 
 

23 

Micron Reference Architecture 

 

Appendix A 

Ceph.conf 

[client] 

rbd_cache = False 

rbd_cache_writethrough_until_flush = False 

 

# Please do not change this file directly since it is managed by Ansible and will be 

overwritten 

[global] 

auth client required = none 

auth cluster required = none 

auth service required = none 

auth supported = none 

cephx require signatures = False 

cephx sign messages = False 

cluster network = 192.168.1.0/24 

debug asok = 0/0 

debug auth = 0/0 

debug bluefs = 0/0 

debug bluestore = 0/0 

debug buffer = 0/0 

debug client = 0/0 

debug context = 0/0 

debug crush = 0/0 

debug filer = 0/0 

debug filestore = 0/0 

debug finisher = 0/0 

debug hadoop = 0/0 

debug heartbeatmap = 0/0 

debug journal = 0/0 

debug journaler = 0/0 

debug lockdep = 0/0 

debug log = 0 

debug mds = 0/0 

debug mds_balancer = 0/0 

debug mds_locker = 0/0 

debug mds_log = 0/0 

debug mds_log_expire = 0/0 

debug mds_migrator = 0/0 

debug mon = 0/0 

debug monc = 0/0 

debug ms = 0/0 

debug objclass = 0/0 

debug objectcacher = 0/0 

debug objecter = 0/0 

debug optracker = 0/0 

debug osd = 0/0 

debug paxos = 0/0 

debug perfcounter = 0/0 

debug rados = 0/0 
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debug rbd = 0/0 

debug rgw = 0/0 

debug rocksdb = 0/0 

debug throttle = 0/0 

debug timer = 0/0 

debug tp = 0/0 

debug zs = 0/0 

fsid = 36a9e9ee-a7b8-4c41-a3e5-0b575f289379 

mon host = 192.168.0.203 

mon pg warn max per osd = 800 

mon_allow_pool_delete = True 

mon_max_pg_per_osd = 800 

ms type = async 

ms_crc_data = False 

ms_crc_header = True 

osd objectstore = bluestore 

osd_pool_default_size = 2 

perf = True 

public network = 192.168.0.0/24 

rocksdb_perf = True 

 

[mon] 

mon_max_pool_pg_num = 166496 

mon_osd_max_split_count = 10000 

 

[osd] 

bluestore_csum_type = none 

bluestore_extent_map_shard_max_size = 200 

bluestore_extent_map_shard_min_size = 50 

bluestore_extent_map_shard_target_size = 100 

osd memory target = 9465613516 

osd_max_pg_log_entries = 10 

osd_min_pg_log_entries = 10 

osd_pg_log_dups_tracked = 10 

osd_pg_log_trim_min = 10 
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Ceph-Ansible Configuration 

All.yml 

 

--- 

dummy: 

fetch_directory: ~/ceph-ansible-keys 

mon_group_name: mons 

osd_group_name: osds 

client_group_name: clients 

mgr_group_name: mgrs 

configure_firewall: False 

ceph_repository_type: cdn 

ceph_origin: repository 

ceph_repository: rhcs 

ceph_rhcs_version: 3 

fsid: "36a9e9ee-a7b8-4c41-a3e5-0b575f289379" 

generate_fsid: false 

cephx: false 

rbd_cache: "false" 

rbd_cache_writethrough_until_flush: "false" 

monitor_interface: enp99s0f1.501 

public_network: 192.168.0.0/24 

cluster_network: 192.168.1.0/24 

osd_mkfs_type: xfs 

osd_mkfs_options_xfs: -f -i size=2048 

osd_mount_options_xfs: noatime,largeio,inode64,swalloc 

osd_objectstore: bluestore 

ceph_conf_overrides: 

  global: 

    auth client required: none 

    auth cluster required: none 

    auth service required: none 

    auth supported: none 

    osd objectstore: bluestore 

    cephx require signatures: False 

    cephx sign messages: False 

    mon_allow_pool_delete: True 

    mon_max_pg_per_osd: 800 

    mon pg warn max per osd: 800 

    ms_crc_header: True 

    ms_crc_data: False 

    ms type: async 

    perf: True 

    rocksdb_perf: True 

    osd_pool_default_size: 2 

    debug asok: 0/0 

    debug auth: 0/0 

    debug bluefs: 0/0 

    debug bluestore: 0/0 
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    debug buffer: 0/0 

    debug client: 0/0 

    debug context: 0/0 

    debug crush: 0/0 

    debug filer: 0/0 

    debug filestore: 0/0 

    debug finisher: 0/0 

    debug hadoop: 0/0 

    debug heartbeatmap: 0/0 

    debug journal: 0/0 

    debug journaler: 0/0 

    debug lockdep: 0/0 

    debug log: 0 

    debug mds: 0/0 

    debug mds_balancer: 0/0 

    debug mds_locker: 0/0 

    debug mds_log: 0/0 

    debug mds_log_expire: 0/0 

    debug mds_migrator: 0/0 

    debug mon: 0/0 

    debug monc: 0/0 

    debug ms: 0/0 

    debug objclass: 0/0 

    debug objectcacher: 0/0 

    debug objecter: 0/0 

    debug optracker: 0/0 

    debug osd: 0/0 

    debug paxos: 0/0 

    debug perfcounter: 0/0 

    debug rados: 0/0 

    debug rbd: 0/0 

    debug rgw: 0/0 

    debug rocksdb: 0/0 

    debug throttle: 0/0 

    debug timer: 0/0 

    debug tp: 0/0 

    debug zs: 0/0 

  mon: 

    mon_max_pool_pg_num: 166496 

    mon_osd_max_split_count: 10000 

  client: 

    rbd_cache: false 

    rbd_cache_writethrough_until_flush: false 

  osd: 

    osd_min_pg_log_entries: 10 

    osd_max_pg_log_entries: 10 

    osd_pg_log_dups_tracked: 10 

    osd_pg_log_trim_min: 10 

    bluestore_csum_type: none 

    bluestore_extent_map_shard_min_size: 50 
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    bluestore_extent_map_shard_max_size: 200 

    bluestore_extent_map_shard_target_size: 100 

disable_transparent_hugepage: "{{ false if osd_objectstore == 'bluestore' else true }}" 

os_tuning_params: 

  - { name: kernel.pid_max, value: 4194303 } 

  - { name: fs.file-max, value: 26234859 } 

  - { name: vm.zone_reclaim_mode, value: 0 } 

  - { name: vm.swappiness, value: 1 } 

  - { name: vm.min_free_kbytes, value: 1000000 } 

  - { name: net.core.rmem_max, value: 268435456 } 

  - { name: net.core.wmem_max, value: 268435456 } 

  - { name: net.ipv4.tcp_rmem, value: 4096 87380 134217728 } 

  - { name: net.ipv4.tcp_wmem, value: 4096 65536 134217728 } 

ceph_tcmalloc_max_total_thread_cache: 134217728 

ceph_docker_image: "rhceph/rhceph-3-rhel7" 

ceph_docker_image_tag: "latest" 

ceph_docker_registry: "registry.access.redhat.com" 

containerized_deployment: False  

  

Osds.yml 

--- 

dummy: 

 

osd_scenario: lvm 

 

lvm_volumes: 

  - data: data-lv1 

    data_vg: vg_nvme0n1 

    db: db-lv1 

    db_vg: vg_nvme0n2 

  - data: data-lv1 

    data_vg: vg_nvme0n3 

    db: db-lv1 

    db_vg: vg_nvme0n4 

  - data: data-lv1 

    data_vg: vg_nvme1n1 

    db: db-lv1 

    db_vg: vg_nvme1n2 

  - data: data-lv1 

    data_vg: vg_nvme1n3 

    db: db-lv1 

    db_vg: vg_nvme1n4 

  - data: data-lv1 

    data_vg: vg_nvme3n1 

    db: db-lv1 

    db_vg: vg_nvme3n2 

  - data: data-lv1 

    data_vg: vg_nvme3n3 
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    db: db-lv1 

    db_vg: vg_nvme3n4 

  - data: data-lv1 

    data_vg: vg_nvme4n1 

    db: db-lv1 

    db_vg: vg_nvme4n2 

  - data: data-lv1 

    data_vg: vg_nvme4n3 

    db: db-lv1 

    db_vg: vg_nvme4n4 

  - data: data-lv1 

    data_vg: vg_nvme5n1 

    db: db-lv1 

    db_vg: vg_nvme5n2 

  - data: data-lv1 

    data_vg: vg_nvme5n3 

    db: db-lv1 

    db_vg: vg_nvme5n4 

  - data: data-lv1 

    data_vg: vg_nvme6n1 

    db: db-lv1 

    db_vg: vg_nvme6n2 

  - data: data-lv1 

    data_vg: vg_nvme6n3 

    db: db-lv1 

    db_vg: vg_nvme6n4 

  - data: data-lv1 

    data_vg: vg_nvme7n1 

    db: db-lv1 

    db_vg: vg_nvme7n2 

  - data: data-lv1 

    data_vg: vg_nvme7n3 

    db: db-lv1 

    db_vg: vg_nvme7n4 

  - data: data-lv1 

    data_vg: vg_nvme8n1 

    db: db-lv1 

    db_vg: vg_nvme8n2 

  - data: data-lv1 

    data_vg: vg_nvme8n3 

    db: db-lv1 

    db_vg: vg_nvme8n4 

  - data: data-lv1 

    data_vg: vg_nvme9n1 

    db: db-lv1 

    db_vg: vg_nvme9n2 

  - data: data-lv1 

    data_vg: vg_nvme9n3 

    db: db-lv1 

    db_vg: vg_nvme9n4 
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  - data: data-lv1 

    data_vg: vg_nvme10n1 

    db: db-lv1 

    db_vg: vg_nvme10n2 

  - data: data-lv1 

    data_vg: vg_nvme10n3 

    db: db-lv1 

    db_vg: vg_nvme10n4 

  - data: data-lv1 

    data_vg: vg_nvme0n5 

    db: db-lv1 

    db_vg: vg_nvme0n6 

  - data: data-lv1 

    data_vg: vg_nvme0n7 

    db: db-lv1 

    db_vg: vg_nvme0n8 

  - data: data-lv1 

    data_vg: vg_nvme1n5 

    db: db-lv1 

    db_vg: vg_nvme1n6 

  - data: data-lv1 

    data_vg: vg_nvme1n7 

    db: db-lv1 

    db_vg: vg_nvme1n8 

  - data: data-lv1 

    data_vg: vg_nvme3n5 

    db: db-lv1 

    db_vg: vg_nvme3n6 

  - data: data-lv1 

    data_vg: vg_nvme3n7 

    db: db-lv1 

    db_vg: vg_nvme3n8 

  - data: data-lv1 

    data_vg: vg_nvme4n5 

    db: db-lv1 

    db_vg: vg_nvme4n6 

  - data: data-lv1 

    data_vg: vg_nvme4n7 

    db: db-lv1 

    db_vg: vg_nvme4n8 

  - data: data-lv1 

    data_vg: vg_nvme5n5 

    db: db-lv1 

    db_vg: vg_nvme5n6 

  - data: data-lv1 

    data_vg: vg_nvme5n7 

    db: db-lv1 

    db_vg: vg_nvme5n8 

  - data: data-lv1 

    data_vg: vg_nvme6n5 
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    db: db-lv1 

    db_vg: vg_nvme6n6 

  - data: data-lv1 

    data_vg: vg_nvme6n7 

    db: db-lv1 

    db_vg: vg_nvme6n8 

  - data: data-lv1 

    data_vg: vg_nvme7n5 

    db: db-lv1 

    db_vg: vg_nvme7n6 

  - data: data-lv1 

    data_vg: vg_nvme7n7 

    db: db-lv1 

    db_vg: vg_nvme7n8 

  - data: data-lv1 

    data_vg: vg_nvme8n5 

    db: db-lv1 

    db_vg: vg_nvme8n6 

  - data: data-lv1 

    data_vg: vg_nvme8n7 

    db: db-lv1 

    db_vg: vg_nvme8n8 

  - data: data-lv1 

    data_vg: vg_nvme9n5 

    db: db-lv1 

    db_vg: vg_nvme9n6 

  - data: data-lv1 

    data_vg: vg_nvme9n7 

    db: db-lv1 

    db_vg: vg_nvme9n8 

  - data: data-lv1 

    data_vg: vg_nvme10n5 

    db: db-lv1 

    db_vg: vg_nvme10n6 

  - data: data-lv1 

    data_vg: vg_nvme10n7 

    db: db-lv1 

    db_vg: vg_nvme10n8  
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Creating Multiple Namespaces 

The Ceph recommendation for the volume storing the OSD database is no less than 4% of the size of the 
OSD data volume, which is the number that we used. 

python3.6 create_namespaces.py -ns 6001169368 250048724 6001169368 250048724 

 6001169368 250048724 6001169368 250048724 -ls 512 -d /dev/nvme0 /dev/nvme1 /dev/nvme3 

/dev/nvme4 /dev/nvme5 /dev/nvme6 /dev/nvme7 /dev/nvme8 /dev/nvme9 /dev/nvme10 

create_namespaces.py 

import argparse 

import time 

from subprocess import Popen, PIPE 

 

 

def parse_arguments(): 

    parser = argparse.ArgumentParser(description='This file creates namespaces across 

NVMe devices') 

    parser.add_argument('-ns', '--namespace-size', nargs='+', required=True, type=str, 

                        help='List of size of each namespace in number of LBAs. 

Specifying more than one will create ' 

                             'multiple namespaces on each device.') 

    parser.add_argument('-ls', '--lba-size', default='512', choices=['512', '4096'], 

required=False, type=str, 

                        help='Size of LBA in bytes. Valid options are 512 and 4096 

(Default: 512)') 

    parser.add_argument('-d', '--devices', nargs='+', required=True, type=str, 

                        help='List of data devices to create OSDs on.') 

 

    return {k: v for k, v in vars(parser.parse_args()).items()} 

 

 

def execute_command(cmd): 

    process = Popen(cmd, stdout=PIPE, stderr=PIPE) 

    stdout, stderr = process.communicate() 

    stdout = stdout.decode() 

    stderr = stderr.decode() 

 

    if stderr not in ('', None): 

        print(stdout) 

        raise Exception(stderr) 

    else: 

        return stdout 

 

 

def remove_namespaces(devices, **_): 

    for dev in devices: 

        cmd = ['nvme', 'list-ns', dev] 

        namespaces = [int(value[value.find('[') + 1:-value.find(']')].strip()) 

                      for value in execute_command(cmd=cmd).strip().split('\n')] 
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        for namespace in namespaces: 

            cmd = ['nvme', 'detach-ns', dev, '-n', str(namespace+1), '-c', '1'] 

            print(execute_command(cmd=cmd)) 

 

            cmd = ['nvme', 'delete-ns', dev, '-n', str(namespace+1)] 

            print(execute_command(cmd=cmd)) 

            time.sleep(0.1) 

 

 

def create_namespaces(devices, namespace_size, lba_size): 

    lba_key = '2' if lba_size == '4096' else '0' 

    for dev in devices: 

        for size in namespace_size: 

            cmd = ['nvme', 'create-ns', dev, '-f', lba_key, '-s', size, '-c', size] 

            print(execute_command(cmd=cmd)) 

 

    attach_namespaces(devices=devices, num_namespaces=len(namespace_size)) 

 

 

def attach_namespaces(devices, num_namespaces): 

    for namespace in range(1, num_namespaces+1): 

        for dev in devices: 

            cmd = ['nvme', 'attach-ns', dev, '-n', str(namespace), '-c', '1'] 

            print(execute_command(cmd=cmd)) 

            time.sleep(1) 

 

 

def run_test(): 

    arguments = parse_arguments() 

 

    remove_namespaces(**arguments) 

    create_namespaces(**arguments) 

 

 

if __name__ == '__main__': 

    run_test() 

 

  



 
 
 
 

33 

Micron Reference Architecture 

 

Partitioning Drives for OSDs 

python3.6 create_ceph_osd_partitions.py -o 1 -d /dev/nvme0n1 /dev/nvme1n1 /dev/nvme3n1 

/dev/nvme4n1 /dev/nvme5n1 /dev/nvme6n1 /dev/nvme7n1 /dev/nvme8n1 /dev/nvme9n1 

/dev/nvme10n1 /dev/nvme0n3 /dev/nvme1n3 /dev/nvme3n3 /dev/nvme4n3 /dev/nvme5n3 

/dev/nvme6n3 /dev/nvme7n3 /dev/nvme8n3 /dev/nvme9n3 /dev/nvme10n3 /dev/nvme0n5 

/dev/nvme1n5 /dev/nvme3n5 /dev/nvme4n5 /dev/nvme5n5 /dev/nvme6n5 /dev/nvme7n5 

/dev/nvme8n5 /dev/nvme9n5 /dev/nvme10n5 /dev/nvme0n7 /dev/nvme1n7 /dev/nvme3n7 

/dev/nvme4n7 /dev/nvme5n7 /dev/nvme6n7 /dev/nvme7n7 /dev/nvme8n7 /dev/nvme9n7 

/dev/nvme10n7 -c /dev/nvme0n2 /dev/nvme1n2 /dev/nvme3n2 /dev/nvme4n2 /dev/nvme5n2 

/dev/nvme6n2 /dev/nvme7n2 /dev/nvme8n2 /dev/nvme9n2 /dev/nvme10n2 /dev/nvme0n4 

/dev/nvme1n4 /dev/nvme3n4 /dev/nvme4n4 /dev/nvme5n4 /dev/nvme6n4 /dev/nvme7n4 

/dev/nvme8n4 /dev/nvme9n4 /dev/nvme10n4 /dev/nvme0n6 /dev/nvme1n6 /dev/nvme3n6 

/dev/nvme4n6 /dev/nvme5n6 /dev/nvme6n6 /dev/nvme7n6 /dev/nvme8n6 /dev/nvme9n6 

/dev/nvme10n6 /dev/nvme0n8 /dev/nvme1n8 /dev/nvme3n8 /dev/nvme4n8 /dev/nvme5n8 

/dev/nvme6n8 /dev/nvme7n8 /dev/nvme8n8 /dev/nvme9n8 /dev/nvme10n8 

The value of 1 was used for osds-per-device because we used multiple namespaces on the 

same physical device. Each namespace only has 1 OSD. 

create_ceph_osd_partitions.py 

import argparse 

import os 

from subprocess import Popen, PIPE 

 

 

class NoVGError(Exception): 

    pass 

 

 

class NoPVError(Exception): 

    pass 

 

 

def parse_arguments(): 

    parser = argparse.ArgumentParser(description='This file partitions devices for ceph 

storage deployment') 

    parser.add_argument('-o', '--osds-per-device', required=True, type=int, help='Number 

of OSDs per data device') 

    parser.add_argument('-d', '--data-devices', nargs='+', required=True, type=str, 

                        help='List of data devices to create OSDs on.') 

    parser.add_argument('-c', '--cache-devices', nargs='+', required=False, type=str, 

                        help='Cache devices to store BlueStore RocksDB and write-ahead 

log') 

    parser.add_argument('-ws', '--wal-sz', required=False, type=int, 

                        help='Size of each write-ahead log on specified cache devices in 

GiB') 

    parser.add_argument('-dnr', '--do-not-remove', action='store_true', 

                        help='Do not remove old volumes (Disabled by default)') 

    parser.add_argument('-dnc', '--do-not-create', action='store_true', 

                        help='Do not create new volumes (Disabled by default)') 
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    return {k: v for k, v in vars(parser.parse_args()).items()} 

 

 

def execute_command(cmd): 

    process = Popen(cmd, stdout=PIPE, stderr=PIPE) 

    stdout, stderr = process.communicate() 

 

    if stderr not in ('', None, b''): 

        print(stdout.decode()) 

        if b'Volume group' in stderr and b'not found' in stderr: 

            raise NoVGError(stderr.decode()) 

        elif b'No PV found on device' in stderr: 

            raise NoPVError(stderr.decode()) 

        else: 

            raise Exception(stderr.decode()) 

    else: 

        return stdout.decode() 

 

 

def remove_lvm_volumes(data_devices, cache_devices, **_): 

    dev_path = '/dev/' 

 

    if cache_devices: 

        device_list = data_devices + cache_devices 

    else: 

        device_list = data_devices 

 

    vg_list = [('vg_{}'.format(device[len(dev_path):]), device) for device in 

device_list] 

 

    for vg, device in vg_list: 

        vg_path = os.path.join(dev_path, vg) 

 

        # Remove Logical Volumes 

        try: 

            for item in os.listdir(vg_path): 

                cmd = ['lvremove', '-y', os.path.join(vg_path, item)] 

                print(execute_command(cmd=cmd)) 

        except OSError as e: 

            if e.errno == 2: 

                pass 

            else: 

                raise e 

        try: 

            # Remove Volume Group 

            cmd = ['vgremove', '-y', vg] 

            print(f'Attempting to remove volume group {vg} for device {device}') 

            print(execute_command(cmd=cmd)) 

        except NoVGError: 
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            print(f'No volume group found for device {device}') 

            pass 

 

        try: 

            # Remove Physical Volume 

            cmd = ['pvremove', '-y', device] 

            print(f'Attempting to remove physical volume for device {device}') 

            print(execute_command(cmd=cmd)) 

        except NoPVError: 

            print(f'No physical volume found for device {device}') 

            pass 

 

        # Wipe FS 

        cmd = ['nvme', 'format', device, '-s', '1'] 

        print(f'Secure erasing device {device}') 

        print(execute_command(cmd=cmd)) 

        # 

        # # Create GPT 

        # cmd = ['sudo', 'parted', device, '-s', 'mklabel', 'gpt'] 

        # print(f'Creating GPT label on device {device}') 

        # print(execute_command(cmd=cmd)) 

 

 

def create_partitions(data_devices, osds_per_device, cache_devices, wal_sz, **_): 

    # Create cache partitions 

    if cache_devices: 

        print('Creating cache device partitions') 

        db_partitions = len(data_devices) * osds_per_device // len(cache_devices) 

        create_cache_device_volumes(cache_devices=cache_devices, wal_sz=wal_sz, 

db_partitions=db_partitions) 

 

    # Create data partitions 

    print('Creating data partitions') 

    create_data_device_volumes(data_devices=data_devices, 

osds_per_device=osds_per_device) 

 

 

def create_cache_device_volumes(cache_devices, wal_sz, db_partitions): 

    for dev in cache_devices: 

        cmd = ['pvcreate', dev] 

        print(execute_command(cmd=cmd)) 

 

        vg_name = 'vg_{}'.format(os.path.basename(dev)) 

        cmd = ['vgcreate', vg_name, dev] 

        print(execute_command(cmd=cmd)) 

 

        gb_total = get_total_size(vg_name=vg_name) 

 

        # If WAL was given 

        if not wal_sz: 

            wal_sz = 0 
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        sz_per_db = (gb_total // db_partitions) - wal_sz 

 

        for i in range(1, db_partitions+1): 

            cmd = ['lvcreate', '-y', '--name', 'db-lv{}'.format(i), '--size', 

'{}G'.format(sz_per_db), vg_name] 

            print(execute_command(cmd=cmd)) 

            if wal_sz: 

                cmd = ['lvcreate', '-y', '--name', 'wal-lv{}'.format(i), '--size', 

'{}G'.format(wal_sz), vg_name] 

                print(execute_command(cmd=cmd)) 

 

 

def create_data_device_volumes(data_devices, osds_per_device): 

    for dev in data_devices: 

        cmd = ['pvcreate', dev] 

        print(f'Creating LVM physical volume on device {dev}') 

        print(execute_command(cmd=cmd)) 

 

        vg_name = 'vg_{}'.format(os.path.basename(dev)) 

        cmd = ['vgcreate', vg_name, dev] 

        print(f'Creating LVM volume group {vg_name} on {dev}') 

        print(execute_command(cmd=cmd)) 

 

        gb_total = get_total_size(vg_name=vg_name) 

 

        sz_per_osd = gb_total // osds_per_device 

 

        for i in range(1, osds_per_device+1): 

            cmd = ['lvcreate', '-y', '--name', f'data-lv{i}', '--size', 

f'{sz_per_osd}G', vg_name] 

            print(f'Creating {sz_per_osd}G LVM logical volume data-lv{i} on volume group 

{vg_name}') 

            print(execute_command(cmd=cmd)) 

 

 

def get_total_size(vg_name): 

    cmd = ['vgdisplay', vg_name] 

    stdout = execute_command(cmd=cmd) 

 

    total_pe = 0 

    pe_size = 0 

 

    for line in stdout.split('\n'): 

        if 'Total PE' in line: 

            total_pe = int(line.split()[2]) 

        elif 'PE Size' in line: 

            pe_size = int(float(line.split()[2])) 

 

    gb_total = total_pe * pe_size // 1024 
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    if gb_total != 0: 

        return gb_total 

    else: 

        raise ValueError(f'Issue found when displaying volume groups. Total 

PE:{total_pe}\tPE Size: {pe_size}') 

 

 

def run_test(): 

    arguments = parse_arguments() 

 

    if not arguments['do_not_remove']: 

        # Remove All Old LVM Volumes 

        remove_lvm_volumes(**arguments) 

 

    if not arguments['do_not_create']: 

        create_partitions(**arguments) 

 

 

if __name__ == '__main__': 

    run_test() 
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About Micron 
Micron Technology (Nasdaq: MU) is a world leader in innovative memory solutions. Through our global brands — 
Micron, Crucial® and Ballistix® — our broad portfolio of high-performance memory technologies, including DRAM, 
NAND, NOR Flash and 3D XPoint™ memory, is transforming how the world uses information to enrich life. Backed 
by 40 years of technology leadership, our memory and storage solutions enable disruptive trends, including 
artificial intelligence, 5G, machine learning and autonomous vehicles, in key market segments like data center, 
networking, automotive, industrial, mobile, graphics and client. Our common stock trades on the Nasdaq under the 
symbol MU. 

About Red Hat 
Red Hat is the world’s leading provider of open source software solutions, using a community-powered approach to 
provide reliable and high-performing cloud, Linux, middleware, storage, and virtualization technologies. Red Hat also 
offers award-winning support, training, and consulting services. As a connective hub in a global network of 
enterprises, partners, and open source communities, Red Hat helps create relevant, innovative technologies that 
liberate resources for growth and prepare customers for the future of IT. 

About Ceph Storage  
Ceph is an open source distributed object store and file system designed to provide excellent performance, 
reliability, and scalability. It can: 

 Free you from the expensive lock-in of proprietary, hardware-based storage solutions. 

 Consolidate labor and storage costs into one versatile solution. 

 Introduce cost-effective scalability on self-healing clusters based on standard servers and disks 
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